Edinburgh Clinical NLP at MEDIQA-CORR 2024: Guiding Large Language Models with Hints
- URL: http://arxiv.org/abs/2405.18028v1
- Date: Tue, 28 May 2024 10:20:29 GMT
- Title: Edinburgh Clinical NLP at MEDIQA-CORR 2024: Guiding Large Language Models with Hints
- Authors: Aryo Pradipta Gema, Chaeeun Lee, Pasquale Minervini, Luke Daines, T. Ian Simpson, Beatrice Alex,
- Abstract summary: We evaluate the capability of general LLMs to identify and correct medical errors with multiple prompting strategies.
We propose incorporating error-span predictions from a smaller, fine-tuned model in two ways.
Our best-performing solution with 8-shot + CoT + hints ranked sixth in the shared task leaderboard.
- Score: 8.547853819087043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The MEDIQA-CORR 2024 shared task aims to assess the ability of Large Language Models (LLMs) to identify and correct medical errors in clinical notes. In this study, we evaluate the capability of general LLMs, specifically GPT-3.5 and GPT-4, to identify and correct medical errors with multiple prompting strategies. Recognising the limitation of LLMs in generating accurate corrections only via prompting strategies, we propose incorporating error-span predictions from a smaller, fine-tuned model in two ways: 1) by presenting it as a hint in the prompt and 2) by framing it as multiple-choice questions from which the LLM can choose the best correction. We found that our proposed prompting strategies significantly improve the LLM's ability to generate corrections. Our best-performing solution with 8-shot + CoT + hints ranked sixth in the shared task leaderboard. Additionally, our comprehensive analyses show the impact of the location of the error sentence, the prompted role, and the position of the multiple-choice option on the accuracy of the LLM. This prompts further questions about the readiness of LLM to be implemented in real-world clinical settings.
Related papers
- Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
We introduce ALternate Contrastive Decoding (ALCD) to solve hallucination issues in medical information extraction tasks.
ALCD demonstrates significant improvements in resolving hallucination issues compared to conventional decoding methods.
arXiv Detail & Related papers (2024-10-21T07:19:19Z) - WangLab at MEDIQA-CORR 2024: Optimized LLM-based Programs for Medical Error Detection and Correction [5.7931394318054155]
We present our approach that achieved top performance in all three subtasks.
For the MS dataset, which contains subtle errors, we developed a retrieval-based system.
For the UW dataset, reflecting more realistic clinical notes, we created a pipeline of modules to detect, localize, and correct errors.
arXiv Detail & Related papers (2024-04-22T19:31:45Z) - Evaluating LLMs at Detecting Errors in LLM Responses [30.645694514606507]
This work introduces ReaLMistake, the first error detection benchmark consisting of objective, realistic, and diverse errors made by LLMs.
We use ReaLMistake to evaluate error detectors based on 12 Large Language Models.
arXiv Detail & Related papers (2024-04-04T17:19:47Z) - Can LLMs Correct Physicians, Yet? Investigating Effective Interaction Methods in the Medical Domain [21.96129653695565]
Large Language Models (LLMs) can assist and potentially correct physicians in medical decision-making tasks.
We evaluate several LLMs, including Meditron, Llama2, and Mistral, to analyze the ability of these models to interact effectively with physicians across different scenarios.
arXiv Detail & Related papers (2024-03-29T16:59:13Z) - Rethinking the Roles of Large Language Models in Chinese Grammatical
Error Correction [62.409807640887834]
Chinese Grammatical Error Correction (CGEC) aims to correct all potential grammatical errors in the input sentences.
LLMs' performance as correctors on CGEC remains unsatisfactory due to its challenging task focus.
We rethink the roles of LLMs in the CGEC task so that they can be better utilized and explored in CGEC.
arXiv Detail & Related papers (2024-02-18T01:40:34Z) - Combining Insights From Multiple Large Language Models Improves
Diagnostic Accuracy [0.0]
Large language models (LLMs) are proposed as viable diagnostic support tools or even spoken of as replacements for "curbside consults"
We assessed and compared the accuracy of differential diagnoses obtained by asking individual commercial LLMs against the accuracy of differential diagnoses synthesized by aggregating responses from combinations of the same LLMs.
arXiv Detail & Related papers (2024-02-13T21:24:21Z) - NoMIRACL: Knowing When You Don't Know for Robust Multilingual
Retrieval-Augmented Generation [92.5132418788568]
Retrieval-augmented generation (RAG) grounds large language model (LLM) output by leveraging external knowledge sources to reduce factual hallucinations.
NoMIRACL is a human-annotated dataset for evaluating LLM robustness in RAG across 18 typologically diverse languages.
We measure robustness using two metrics: (i) hallucination rate, measuring model tendency to hallucinate an answer, when the answer is not present in passages in the non-relevant subset, and (ii) error rate, measuring model inaccuracy to recognize relevant passages in the relevant subset.
arXiv Detail & Related papers (2023-12-18T17:18:04Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
We present a method named Rephrase and Respond' (RaR) which allows Large Language Models to rephrase and expand questions posed by humans.
RaR serves as a simple yet effective prompting method for improving performance.
We show that RaR is complementary to the popular Chain-of-Thought (CoT) methods, both theoretically and empirically.
arXiv Detail & Related papers (2023-11-07T18:43:34Z) - Learning From Mistakes Makes LLM Better Reasoner [106.48571828587728]
Large language models (LLMs) recently exhibited remarkable reasoning capabilities on solving math problems.
This work explores whether LLMs can LEarn from MistAkes (LEMA), akin to the human learning process.
arXiv Detail & Related papers (2023-10-31T17:52:22Z) - MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering [45.84961106102445]
Large Language Models (LLMs) often perform poorly on domain-specific tasks such as medical question answering (QA)
We propose a comprehensive retrieval strategy to extract medical facts from an external knowledge base, and then inject them into the LLM's query prompt.
Our retrieval-augmented Vicuna-7B model exhibited an accuracy improvement from 44.46% to 48.54%.
arXiv Detail & Related papers (2023-09-27T21:26:03Z) - Statistical Knowledge Assessment for Large Language Models [79.07989821512128]
Given varying prompts regarding a factoid question, can a large language model (LLM) reliably generate factually correct answers?
We propose KaRR, a statistical approach to assess factual knowledge for LLMs.
Our results reveal that the knowledge in LLMs with the same backbone architecture adheres to the scaling law, while tuning on instruction-following data sometimes compromises the model's capability to generate factually correct text reliably.
arXiv Detail & Related papers (2023-05-17T18:54:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.