論文の概要: SEMF: Supervised Expectation-Maximization Framework for Predicting Intervals
- arxiv url: http://arxiv.org/abs/2405.18176v2
- Date: Wed, 29 May 2024 14:17:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 11:12:33.881283
- Title: SEMF: Supervised Expectation-Maximization Framework for Predicting Intervals
- Title(参考訳): SEMF: インターバル予測のための期待最大化フレームワーク
- Authors: Ilia Azizi, Marc-Olivier Boldi, Valérie Chavez-Demoulin,
- Abstract要約: このフレームワークは、完全なデータまたは欠落したデータセットの予測間隔を生成する。
SEMFは既存の機械アルゴリズムとシームレスに統合される。
その結果、最先端技術の進歩の可能性が浮き彫りになった。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces the Supervised Expectation-Maximization Framework (SEMF), a versatile and model-agnostic framework that generates prediction intervals for datasets with complete or missing data. SEMF extends the Expectation-Maximization (EM) algorithm, traditionally used in unsupervised learning, to a supervised context, enabling it to extract latent representations for uncertainty estimation. The framework demonstrates robustness through extensive empirical evaluation across 11 tabular datasets, achieving$\unicode{x2013}$in some cases$\unicode{x2013}$narrower normalized prediction intervals and higher coverage than traditional quantile regression methods. Furthermore, SEMF integrates seamlessly with existing machine learning algorithms, such as gradient-boosted trees and neural networks, exemplifying its usefulness for real-world applications. The experimental results highlight SEMF's potential to advance state-of-the-art techniques in uncertainty quantification.
- Abstract(参考訳): この研究は、完全なデータまたは欠落したデータセットの予測間隔を生成する汎用的でモデルに依存しないフレームワークであるSupervised expectation-Maximization Framework (SEMF)を紹介する。
SEMFは、従来教師なし学習で用いられてきた期待最大化(EM)アルゴリズムを教師付き文脈に拡張し、不確実性推定のための潜在表現を抽出する。
このフレームワークは、11のグラフデータセットにわたる広範な経験的評価を通じて堅牢性を実証し、場合によっては$\unicode{x2013}$narrower正規化予測間隔を達成し、従来の量子回帰法よりも高いカバレッジを達成している。
さらに、SEMFは勾配ブーストツリーやニューラルネットワークといった既存の機械学習アルゴリズムとシームレスに統合され、現実世界のアプリケーションにその有用性を実証する。
実験の結果は、SEMFが不確実性定量化において最先端技術を開発する可能性を強調した。
関連論文リスト
- Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
本稿では,新しい教師なしアンサンブル学習モデル(SUEL)を提案する。
連続的な予測スコアを持つ予測器のセット間の依存関係を利用して、ラベル付きデータなしで予測器をランク付けし、それらをアンサンブルされたスコアに重み付けする。
提案手法の有効性は、シミュレーション研究とリスク遺伝子発見の現実的応用の両方を通じて厳密に評価されている。
論文 参考訳(メタデータ) (2024-08-14T20:14:42Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - MCDFN: Supply Chain Demand Forecasting via an Explainable Multi-Channel Data Fusion Network Model [0.0]
CNN,Long Short-Term Memory Network (LSTM), Gated Recurrent Units (GRU)を統合したハイブリッドアーキテクチャであるMulti-Channel Data Fusion Network (MCDFN)を紹介する。
我々の比較ベンチマークは、MCDFNが他の7つのディープラーニングモデルより優れていることを示している。
本研究は,需要予測手法を進歩させ,MCDFNをサプライチェーンシステムに統合するための実践的ガイドラインを提供する。
論文 参考訳(メタデータ) (2024-05-24T14:30:00Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
軌道予測は、自律運転、ロボット工学、シーン理解など、様々な応用において重要な役割を果たしている。
既存のアプローチは主に、一般に標準入力時間を用いて、公開データセットの予測精度を高めるために、コンパクトなニューラルネットワークの開発に重点を置いている。
本稿では,様々な観測期間に対する既存の軌道予測の堅牢性を高めるための,汎用的で効果的なフレームワークFlexiLength Network(FLN)を紹介する。
論文 参考訳(メタデータ) (2024-03-31T17:18:57Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - XRMDN: An Extended Recurrent Mixture Density Network for Short-Term
Probabilistic Rider Demand Forecasting with High Volatility [16.047461063459846]
本稿では,XRMDN (Extended Recurrent Mixture Density Network) を提案する。
XRMDNは需要動向を順応的に捉え、特に高ボラティリティシナリオにおいて予測精度を大幅に向上させる。
論文 参考訳(メタデータ) (2023-10-15T14:18:42Z) - Boosted Control Functions [10.503777692702952]
本研究の目的は,因果効果推定と予測タスクのギャップを埋めることである。
我々は,機械学習の分布場と同時方程式モデル,およびエコノメティクスの制御関数との新たな接続を確立する。
このフレームワーク内では、予測モデルに対する不変性の強い概念を提案し、それを既存の(ウィーカー)バージョンと比較する。
論文 参考訳(メタデータ) (2023-10-09T15:43:46Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - An autoencoder wavelet based deep neural network with attention
mechanism for multistep prediction of plant growth [4.077787659104315]
本稿では,植物茎径変動予測(sdv)に着目した農業における植物成長予測手法を提案する。
ウェーブレット分解を元のデータに適用し、モデルフィッティングを容易にし、ノイズを低減する。
エンコーダ・デコーダフレームワークはLong Short Term Memory (LSTM)を用いて開発され、データから適切な特徴抽出に使用される。
時系列データの長期依存性をモデル化するために,LSTMと注意メカニズムを含む繰り返しニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-07T20:30:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。