論文の概要: Context-Specific Refinements of Bayesian Network Classifiers
- arxiv url: http://arxiv.org/abs/2405.18298v1
- Date: Tue, 28 May 2024 15:50:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 17:50:12.414614
- Title: Context-Specific Refinements of Bayesian Network Classifiers
- Title(参考訳): ベイジアンネットワーク分類器の文脈特徴化
- Authors: Manuele Leonelli, Gherardo Varando,
- Abstract要約: 分類器の新しいクラスとベイズネットワークの関係について検討する。
モデルにデータ駆動学習ルーチンを導入し実装する。
この研究は、非対称情報を埋め込んだモデルが分類精度を高めることを実証している。
- 参考スコア(独自算出の注目度): 1.9136291802656262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supervised classification is one of the most ubiquitous tasks in machine learning. Generative classifiers based on Bayesian networks are often used because of their interpretability and competitive accuracy. The widely used naive and TAN classifiers are specific instances of Bayesian network classifiers with a constrained underlying graph. This paper introduces novel classes of generative classifiers extending TAN and other famous types of Bayesian network classifiers. Our approach is based on staged tree models, which extend Bayesian networks by allowing for complex, context-specific patterns of dependence. We formally study the relationship between our novel classes of classifiers and Bayesian networks. We introduce and implement data-driven learning routines for our models and investigate their accuracy in an extensive computational study. The study demonstrates that models embedding asymmetric information can enhance classification accuracy.
- Abstract(参考訳): 監視された分類は、機械学習において最もユビキタスなタスクの1つである。
ベイズネットワークに基づく生成的分類器は、解釈可能性と競合精度のためにしばしば使用される。
広く使われているネーブ分類とTAN分類器は、制約付き基礎グラフを持つベイズネットワーク分類器の特定の例である。
本稿では,TANや他の有名なベイズ型ネットワーク分類器を拡張した新規な生成型分類器について紹介する。
提案手法は,ベイジアンネットワークを拡張した木モデルに基づく。
我々は、新しい分類器のクラスとベイズネットワークの関係を正式に研究する。
本研究では,データ駆動型学習ルーチンの導入と実装を行い,その精度を広範囲にわたる計算研究で検証する。
この研究は、非対称情報を埋め込んだモデルが分類精度を高めることを実証している。
関連論文リスト
- How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Neural Representations Reveal Distinct Modes of Class Fitting in
Residual Convolutional Networks [5.1271832547387115]
ニューラル表現の確率モデルを利用して、残余ネットワークがクラスにどのように適合するかを調べる。
調査対象モデルのクラスは均一に適合していないことがわかった。
神経表現の未発見構造は, トレーニング例の堅牢性と, 対向記憶の相関性を示す。
論文 参考訳(メタデータ) (2022-12-01T18:55:58Z) - Visualization Of Class Activation Maps To Explain AI Classification Of
Network Packet Captures [0.0]
ネットワーク内のコネクションの数と新しいアプリケーションの追加は、大量のログデータを引き起こします。
ディープラーニング手法は、特徴抽出と単一システムにおけるデータからの分類の両方を提供する。
本稿では、ネットワークデータの分類と説明技法を組み合わせて、専門家、アルゴリズム、データ間のインターフェースを形成する視覚対話型ツールを提案する。
論文 参考訳(メタデータ) (2022-09-05T16:34:43Z) - Wide and Deep Neural Networks Achieve Optimality for Classification [23.738242876364865]
我々は、最適性を達成するニューラルネットワーク分類器の明示的な集合を同定し、構築する。
特に、最適性を実現するネットワーク構築に使用できる明示的なアクティベーション関数を提供する。
その結果,過度な深度が有害な回帰タスクとは対照的に,分類タスクにディープネットワークを使用することの利点が浮き彫りになった。
論文 参考訳(メタデータ) (2022-04-29T14:27:42Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
本稿では,時間グラフネットワークに基づく動的ネットワーク表現学習のための新しいアプローチを提案する。
評価のために、時間的ネットワーク埋め込みの評価のためのベンチマークパイプラインを提供する。
欧州の大手銀行が提供した実世界のダウンストリームグラフ機械学習タスクにおいて、我々のモデルの適用性と優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T15:39:52Z) - Semi-supervised learning with Bayesian Confidence Propagation Neural
Network [0.0]
ラベルの少ないデータから内部表現を学習することは、機械学習研究に有用である。
近年の研究では、これらのネットワークがベイジアン・ヘビアン学習規則を用いてデータから有用な内部表現を学習できることが示されている。
論文 参考訳(メタデータ) (2021-06-29T16:29:17Z) - Polynomial Networks in Deep Classifiers [55.90321402256631]
我々は深層ニューラルネットワークの研究を統一的な枠組みで行った。
私たちのフレームワークは、各モデルの誘導バイアスに関する洞察を提供します。
提案モデルの有効性を,標準画像および音声分類ベンチマークで評価した。
論文 参考訳(メタデータ) (2021-04-16T06:41:20Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - A new class of generative classifiers based on staged tree models [2.66269503676104]
分類のための生成モデルは、クラス変数と特徴の合同確率分布を使用して決定規則を構成する。
ここでは,ステージ付き木分類器と呼ばれる,コンテキスト固有の独立性を考慮した新しい生成型分類器を導入する。
タイタニックの乗客の運命を予測するための応用分析は、生成分類器の新しいクラスが与えることができる洞察を強調します。
論文 参考訳(メタデータ) (2020-12-26T19:30:35Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z) - Network Classifiers Based on Social Learning [71.86764107527812]
空間と時間に対して独立に訓練された分類器を結合する新しい手法を提案する。
提案したアーキテクチャは、ラベルのないデータで時間とともに予測性能を改善することができる。
この戦略は高い確率で一貫した学習をもたらすことが示され、未訓練の分類器に対して頑健な構造が得られる。
論文 参考訳(メタデータ) (2020-10-23T11:18:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。