論文の概要: Semi-supervised learning with Bayesian Confidence Propagation Neural
Network
- arxiv url: http://arxiv.org/abs/2106.15546v1
- Date: Tue, 29 Jun 2021 16:29:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-30 17:41:24.745857
- Title: Semi-supervised learning with Bayesian Confidence Propagation Neural
Network
- Title(参考訳): Bayesian Confidence Propagation Neural Networkを用いた半教師付き学習
- Authors: Naresh Balaji Ravichandran, Anders Lansner, Pawel Herman
- Abstract要約: ラベルの少ないデータから内部表現を学習することは、機械学習研究に有用である。
近年の研究では、これらのネットワークがベイジアン・ヘビアン学習規則を用いてデータから有用な内部表現を学習できることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Learning internal representations from data using no or few labels is useful
for machine learning research, as it allows using massive amounts of unlabeled
data. In this work, we use the Bayesian Confidence Propagation Neural Network
(BCPNN) model developed as a biologically plausible model of the cortex. Recent
work has demonstrated that these networks can learn useful internal
representations from data using local Bayesian-Hebbian learning rules. In this
work, we show how such representations can be leveraged in a semi-supervised
setting by introducing and comparing different classifiers. We also evaluate
and compare such networks with other popular semi-supervised classifiers.
- Abstract(参考訳): ラベルなしのデータから内部表現を学ぶことは、大量のラベルなしデータを使用することを可能にする機械学習研究に有用である。
本研究では,BCPNN(Bayes Confidence Propagation Neural Network)モデルを用いた。
近年,これらのネットワークがベイズ・ヘビー語学習規則を用いて,データから有用な内部表現を学習できることが実証されている。
本稿では,これらの表現を半教師設定でどのように活用できるかを,分類器の分類・比較によって示す。
また,このネットワークを他の一般的な半教師付き分類器と比較した。
関連論文リスト
- Linking in Style: Understanding learned features in deep learning models [0.0]
畳み込みニューラルネットワーク(CNN)は抽象的な特徴を学び、オブジェクト分類を行う。
本稿では,CNNにおける学習特徴を可視化し,体系的に解析する自動手法を提案する。
論文 参考訳(メタデータ) (2024-09-25T12:28:48Z) - Fuzzy Convolution Neural Networks for Tabular Data Classification [0.0]
畳み込みニューラルネットワーク(CNN)は、様々な領域における顕著な性能のために、多くの注目を集めている。
本稿では,表データに適したファジィ畳み込みニューラルネットワーク(FCNN)を提案する。
論文 参考訳(メタデータ) (2024-06-04T20:33:35Z) - Context-Specific Refinements of Bayesian Network Classifiers [1.9136291802656262]
分類器の新しいクラスとベイズネットワークの関係について検討する。
モデルにデータ駆動学習ルーチンを導入し実装する。
この研究は、非対称情報を埋め込んだモデルが分類精度を高めることを実証している。
論文 参考訳(メタデータ) (2024-05-28T15:50:50Z) - Spiking neural networks with Hebbian plasticity for unsupervised
representation learning [0.0]
教師なしの手順でデータから分散内部表現を学習するための新しいスパイクニューラルネットワークモデルを提案する。
オンライン相関に基づくHebbian-Bayesian学習と再配線機構を,前述した表現学習をスパイクニューラルネットワークに導入する。
我々は,非スパイクBCPNNに近い性能を示し,MNISTとF-MNISTの機械学習ベンチマークでトレーニングした場合,他のヘビーンのスパイクネットワークと競合することを示す。
論文 参考訳(メタデータ) (2023-05-05T22:34:54Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Semi-Supervised Learning using Siamese Networks [3.492636597449942]
本研究は,シームズネットワークを用いた類似度関数学習に基づく,半教師付き学習の新しい学習方法を提案する。
ラベルのないインスタンスの信頼性予測は、シームズネットワークを再トレーニングするための真のラベルとして使用される。
ラベルのない予測を改善するため,グローバルな一貫性を備えた局所学習も評価した。
論文 参考訳(メタデータ) (2021-09-02T09:06:35Z) - Leveraging Sparse Linear Layers for Debuggable Deep Networks [86.94586860037049]
学習した深い特徴表現に疎い線形モデルを適用することで、よりデバッグ可能なニューラルネットワークを実現する方法を示す。
その結果、スパースな説明は、スプリアス相関を特定し、誤分類を説明し、視覚および言語タスクにおけるモデルバイアスを診断するのに役立ちます。
論文 参考訳(メタデータ) (2021-05-11T08:15:25Z) - Deep Archimedean Copulas [98.96141706464425]
ACNetは、構造的特性を強制する、新しい差別化可能なニューラルネットワークアーキテクチャである。
我々は、ACNetが共通のアルキメデスコピュラスを近似し、データに適合する可能性のある新しいコプラを生成することができることを示した。
論文 参考訳(メタデータ) (2020-12-05T22:58:37Z) - Network Classifiers Based on Social Learning [71.86764107527812]
空間と時間に対して独立に訓練された分類器を結合する新しい手法を提案する。
提案したアーキテクチャは、ラベルのないデータで時間とともに予測性能を改善することができる。
この戦略は高い確率で一貫した学習をもたらすことが示され、未訓練の分類器に対して頑健な構造が得られる。
論文 参考訳(メタデータ) (2020-10-23T11:18:20Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
実世界のデータの解釈可能な非冗長表現を見つけることは、機械学習の鍵となる問題の一つである。
本稿では,オートエンコーダのトレーニングにデータ拡張を利用する新しい手法を提案する。
このような方法で変分オートエンコーダを訓練し、補助ネットワークによって変換結果を予測できるようにする。
論文 参考訳(メタデータ) (2020-10-10T14:04:44Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。