Deep Learning Innovations for Underwater Waste Detection: An In-Depth Analysis
- URL: http://arxiv.org/abs/2405.18299v4
- Date: Wed, 20 Nov 2024 23:23:40 GMT
- Title: Deep Learning Innovations for Underwater Waste Detection: An In-Depth Analysis
- Authors: Jaskaran Singh Walia, Pavithra L K,
- Abstract summary: This paper conducts a comprehensive review of state-of-the-art architectures and on the existing datasets to establish a baseline for submerged waste and trash detection.
The primary goal remains to establish the benchmark of the object localization techniques to be leveraged by advanced underwater sensors and autonomous underwater vehicles.
- Score: 0.0
- License:
- Abstract: Addressing the issue of submerged underwater trash is crucial for safeguarding aquatic ecosystems and preserving marine life. While identifying debris present on the surface of water bodies is straightforward, assessing the underwater submerged waste is a challenge due to the image distortions caused by factors such as light refraction, absorption, suspended particles, color shifts, and occlusion. This paper conducts a comprehensive review of state-of-the-art architectures and on the existing datasets to establish a baseline for submerged waste and trash detection. The primary goal remains to establish the benchmark of the object localization techniques to be leveraged by advanced underwater sensors and autonomous underwater vehicles. The ultimate objective is to explore the underwater environment, to identify, and remove underwater debris. The absence of benchmarks (dataset or algorithm) in many researches emphasizes the need for a more robust algorithmic solution. Through this research, we aim to give performance comparative analysis of various underwater trash detection algorithms.
Related papers
- UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
We propose a framework for reconstructing target objects from multi-view underwater images based on neural SDF.
We introduce hybrid geometric priors to optimize the reconstruction process, markedly enhancing the quality and efficiency of neural SDF reconstruction.
arXiv Detail & Related papers (2024-10-10T16:33:56Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
We introduce FAFA, a Frequency-Aware Flow-Aided self-supervised framework for 6D pose estimation of unmanned underwater vehicles (UUVs)
Our framework relies solely on the 3D model and RGB images, alleviating the need for any real pose annotations or other-modality data like depths.
We evaluate the effectiveness of FAFA on common underwater object pose benchmarks and showcase significant performance improvements compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-09-25T03:54:01Z) - UMono: Physical Model Informed Hybrid CNN-Transformer Framework for Underwater Monocular Depth Estimation [5.596432047035205]
Underwater monocular depth estimation serves as the foundation for tasks such as 3D reconstruction of underwater scenes.
Existing methods fail to consider the unique characteristics of underwater environments.
In this paper, an end-to-end learning framework for underwater monocular depth estimation called UMono is presented.
arXiv Detail & Related papers (2024-07-25T07:52:11Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Optimized Custom Dataset for Efficient Detection of Underwater Trash [3.2634122554914002]
This paper proposes the development of a custom dataset and an efficient detection approach for submerged marine debris.
The dataset encompasses diverse underwater environments and incorporates annotations for precise labeling of debris instances.
Ultimately, the primary objective of this custom dataset is to enhance the diversity of litter instances and improve their detection accuracy in deep submerged environments by leveraging state-of-the-art deep learning architectures.
arXiv Detail & Related papers (2023-05-25T20:28:04Z) - WaterNeRF: Neural Radiance Fields for Underwater Scenes [6.161668246821327]
We advance state-of-the-art in neural radiance fields (NeRFs) to enable physics-informed dense depth estimation and color correction.
Our proposed method, WaterNeRF, estimates parameters of a physics-based model for underwater image formation.
We can produce novel views of degraded as well as corrected underwater images, along with dense depth of the scene.
arXiv Detail & Related papers (2022-09-27T00:53:26Z) - Review On Deep Learning Technique For Underwater Object Detection [0.0]
Repair and maintenance of underwater structures as well as marine science rely heavily on underwater object detection.
This article provides an overview of the dataset that has been utilized in underwater object detection.
arXiv Detail & Related papers (2022-09-21T07:10:44Z) - A Novel Underwater Image Enhancement and Improved Underwater Biological
Detection Pipeline [8.326477369707122]
This paper proposes a novel method for capturing feature information, which adds the convolutional block attention module (CBAM) to the YOLOv5 backbone.
The interference of underwater creature characteristics on object characteristics is decreased, and the output of the backbone network to object information is enhanced.
arXiv Detail & Related papers (2022-05-20T14:18:17Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Underwater image filtering: methods, datasets and evaluation [44.933577173776705]
We review the design principles of underwater image filtering methods.
We discuss image formation models and the results of restoration methods in various water types.
We present task-dependent enhancement methods and datasets for training neural networks and for method evaluation.
arXiv Detail & Related papers (2020-12-22T18:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.