Underwater image filtering: methods, datasets and evaluation
- URL: http://arxiv.org/abs/2012.12258v1
- Date: Tue, 22 Dec 2020 18:56:39 GMT
- Title: Underwater image filtering: methods, datasets and evaluation
- Authors: Chau Yi Li, Riccardo Mazzon, Andrea Cavallaro
- Abstract summary: We review the design principles of underwater image filtering methods.
We discuss image formation models and the results of restoration methods in various water types.
We present task-dependent enhancement methods and datasets for training neural networks and for method evaluation.
- Score: 44.933577173776705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Underwater images are degraded by the selective attenuation of light that
distorts colours and reduces contrast. The degradation extent depends on the
water type, the distance between an object and the camera, and the depth under
the water surface the object is at. Underwater image filtering aims to restore
or to enhance the appearance of objects captured in an underwater image.
Restoration methods compensate for the actual degradation, whereas enhancement
methods improve either the perceived image quality or the performance of
computer vision algorithms. The growing interest in underwater image filtering
methods--including learning-based approaches used for both restoration and
enhancement--and the associated challenges call for a comprehensive review of
the state of the art. In this paper, we review the design principles of
filtering methods and revisit the oceanology background that is fundamental to
identify the degradation causes. We discuss image formation models and the
results of restoration methods in various water types. Furthermore, we present
task-dependent enhancement methods and categorise datasets for training neural
networks and for method evaluation. Finally, we discuss evaluation strategies,
including subjective tests and quality assessment measures. We complement this
survey with a platform ( https://puiqe.eecs.qmul.ac.uk/ ), which hosts
state-of-the-art underwater filtering methods and facilitates comparisons.
Related papers
- Deep Learning Innovations for Underwater Waste Detection: An In-Depth Analysis [0.0]
This paper conducts a comprehensive review of state-of-the-art architectures and on the existing datasets to establish a baseline for submerged waste and trash detection.
The primary goal remains to establish the benchmark of the object localization techniques to be leveraged by advanced underwater sensors and autonomous underwater vehicles.
arXiv Detail & Related papers (2024-05-28T15:51:18Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - WaterFlow: Heuristic Normalizing Flow for Underwater Image Enhancement
and Beyond [52.27796682972484]
Existing underwater image enhancement methods mainly focus on image quality improvement, ignoring the effect on practice.
We propose a normalizing flow for detection-driven underwater image enhancement, dubbed WaterFlow.
Considering the differentiability and interpretability, we incorporate the prior into the data-driven mapping procedure.
arXiv Detail & Related papers (2023-08-02T04:17:35Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
We propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes.
The proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
arXiv Detail & Related papers (2022-12-23T03:00:28Z) - WaterNeRF: Neural Radiance Fields for Underwater Scenes [6.161668246821327]
We advance state-of-the-art in neural radiance fields (NeRFs) to enable physics-informed dense depth estimation and color correction.
Our proposed method, WaterNeRF, estimates parameters of a physics-based model for underwater image formation.
We can produce novel views of degraded as well as corrected underwater images, along with dense depth of the scene.
arXiv Detail & Related papers (2022-09-27T00:53:26Z) - Underwater enhancement based on a self-learning strategy and attention
mechanism for high-intensity regions [0.0]
Images acquired during underwater activities suffer from environmental properties of the water, such as turbidity and light attenuation.
Recent works related to underwater image enhancement, and based on deep learning approaches, tackle the lack of paired datasets generating synthetic ground-truth.
We present a self-supervised learning methodology for underwater image enhancement based on deep learning that requires no paired datasets.
arXiv Detail & Related papers (2022-08-04T19:55:40Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement [10.143025577499039]
We propose a new robust adversarial learning framework via physics model based feedback control and domain adaptation mechanism for enhancing underwater images.
A new method for simulating underwater-like training dataset from RGB-D data by underwater image formation model is proposed.
Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method.
arXiv Detail & Related papers (2020-02-20T07:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.