WaterNeRF: Neural Radiance Fields for Underwater Scenes
- URL: http://arxiv.org/abs/2209.13091v2
- Date: Fri, 29 Sep 2023 18:12:18 GMT
- Title: WaterNeRF: Neural Radiance Fields for Underwater Scenes
- Authors: Advaith Venkatramanan Sethuraman, Manikandasriram Srinivasan
Ramanagopal and Katherine A. Skinner
- Abstract summary: We advance state-of-the-art in neural radiance fields (NeRFs) to enable physics-informed dense depth estimation and color correction.
Our proposed method, WaterNeRF, estimates parameters of a physics-based model for underwater image formation.
We can produce novel views of degraded as well as corrected underwater images, along with dense depth of the scene.
- Score: 6.161668246821327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Underwater imaging is a critical task performed by marine robots for a wide
range of applications including aquaculture, marine infrastructure inspection,
and environmental monitoring. However, water column effects, such as
attenuation and backscattering, drastically change the color and quality of
imagery captured underwater. Due to varying water conditions and
range-dependency of these effects, restoring underwater imagery is a
challenging problem. This impacts downstream perception tasks including depth
estimation and 3D reconstruction. In this paper, we advance state-of-the-art in
neural radiance fields (NeRFs) to enable physics-informed dense depth
estimation and color correction. Our proposed method, WaterNeRF, estimates
parameters of a physics-based model for underwater image formation, leading to
a hybrid data-driven and model-based solution. After determining the scene
structure and radiance field, we can produce novel views of degraded as well as
corrected underwater images, along with dense depth of the scene. We evaluate
the proposed method qualitatively and quantitatively on a real underwater
dataset.
Related papers
- UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
We propose a framework for reconstructing target objects from multi-view underwater images based on neural SDF.
We introduce hybrid geometric priors to optimize the reconstruction process, markedly enhancing the quality and efficiency of neural SDF reconstruction.
arXiv Detail & Related papers (2024-10-10T16:33:56Z) - Enhancing Underwater Imaging with 4-D Light Fields: Dataset and Method [77.80712860663886]
4-D light fields (LFs) enhance underwater imaging plagued by light absorption, scattering, and other challenges.
We propose a progressive framework for underwater 4-D LF image enhancement and depth estimation.
We construct the first 4-D LF-based underwater image dataset for quantitative evaluation and supervised training of learning-based methods.
arXiv Detail & Related papers (2024-08-30T15:06:45Z) - UMono: Physical Model Informed Hybrid CNN-Transformer Framework for Underwater Monocular Depth Estimation [5.596432047035205]
Underwater monocular depth estimation serves as the foundation for tasks such as 3D reconstruction of underwater scenes.
Existing methods fail to consider the unique characteristics of underwater environments.
In this paper, an end-to-end learning framework for underwater monocular depth estimation called UMono is presented.
arXiv Detail & Related papers (2024-07-25T07:52:11Z) - Physics-Inspired Synthesized Underwater Image Dataset [9.959844922120528]
PHISWID is a dataset tailored for enhancing underwater image processing through physics-inspired image synthesis.
Our results reveal that even a basic U-Net architecture, when trained with PHISWID, substantially outperforms existing methods in underwater image enhancement.
We intend to release PHISWID publicly, contributing a significant resource to the advancement of underwater imaging technology.
arXiv Detail & Related papers (2024-04-05T10:23:10Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Seafloor-Invariant Caustics Removal from Underwater Imagery [0.0]
Caustics are complex physical phenomena resulting from the projection of light rays being refracted by the wavy surface.
In this work, we propose a novel method for correcting the effects of caustics on shallow underwater imagery.
In particular, the developed method employs deep learning architectures in order to classify image pixels to "non-caustics" and "caustics"
arXiv Detail & Related papers (2022-12-20T11:11:02Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Generating Physically-Consistent Satellite Imagery for Climate Visualizations [53.61991820941501]
We train a generative adversarial network to create synthetic satellite imagery of future flooding and reforestation events.
A pure deep learning-based model can generate flood visualizations but hallucinates floods at locations that were not susceptible to flooding.
We publish our code and dataset for segmentation guided image-to-image translation in Earth observation.
arXiv Detail & Related papers (2021-04-10T15:00:15Z) - Underwater image filtering: methods, datasets and evaluation [44.933577173776705]
We review the design principles of underwater image filtering methods.
We discuss image formation models and the results of restoration methods in various water types.
We present task-dependent enhancement methods and datasets for training neural networks and for method evaluation.
arXiv Detail & Related papers (2020-12-22T18:56:39Z) - Deep Sea Robotic Imaging Simulator [6.2122699483618]
The largest portion of the ocean - the deep sea - still remains mostly unexplored.
Deep sea images are very different from the images taken in shallow waters and this area did not get much attention from the community.
This paper presents a physical model-based image simulation solution, which uses an in-air texture and depth information as inputs.
arXiv Detail & Related papers (2020-06-27T16:18:32Z) - Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement [10.143025577499039]
We propose a new robust adversarial learning framework via physics model based feedback control and domain adaptation mechanism for enhancing underwater images.
A new method for simulating underwater-like training dataset from RGB-D data by underwater image formation model is proposed.
Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method.
arXiv Detail & Related papers (2020-02-20T07:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.