Analysis of the 2024 BraTS Meningioma Radiotherapy Planning Automated Segmentation Challenge
- URL: http://arxiv.org/abs/2405.18383v3
- Date: Mon, 21 Jul 2025 22:54:18 GMT
- Title: Analysis of the 2024 BraTS Meningioma Radiotherapy Planning Automated Segmentation Challenge
- Authors: Dominic LaBella, Valeriia Abramova, Mehdi Astaraki, Andre Ferreira, Zhifan Jiang, Mason C. Cleveland, Ramandeep Kang, Uma M. Lal-Trehan Estrada, Cansu Yalcin, Rachika E. Hamadache, Clara Lisazo, Adrià Casamitjana, Joaquim Salvi, Arnau Oliver, Xavier Lladó, Iuliana Toma-Dasu, Tiago Jesus, Behrus Puladi, Jens Kleesiek, Victor Alves, Jan Egger, Daniel Capellán-Martín, Abhijeet Parida, Austin Tapp, Xinyang Liu, Maria J. Ledesma-Carbayo, Jay B. Patel, Thomas N. McNeal, Maya Viera, Owen McCall, Albert E. Kim, Elizabeth R. Gerstner, Christopher P. Bridge, Katherine Schumacher, Michael Mix, Kevin Leu, Shan McBurney-Lin, Pierre Nedelec, Javier Villanueva-Meyer, David R. Raleigh, Jonathan Shapey, Tom Vercauteren, Kazumi Chia, Marina Ivory, Theodore Barfoot, Omar Al-Salihi, Justin Leu, Lia M. Halasz, Yuri S. Velichko, Chunhao Wang, John P. Kirkpatrick, Scott R. Floyd, Zachary J. Reitman, Trey C. Mullikin, Eugene J. Vaios, Christina Huang, Ulas Bagci, Sean Sachdev, Jona A. Hattangadi-Gluth, Tyler M. Seibert, Nikdokht Farid, Connor Puett, Matthew W. Pease, Kevin Shiue, Syed Muhammad Anwar, Shahriar Faghani, Peter Taylor, Pranav Warman, Jake Albrecht, András Jakab, Mana Moassefi, Verena Chung, Rong Chai, Alejandro Aristizabal, Alexandros Karargyris, Hasan Kassem, Sarthak Pati, Micah Sheller, Nazanin Maleki, Rachit Saluja, Florian Kofler, Christopher G. Schwarz, Philipp Lohmann, Phillipp Vollmuth, Louis Gagnon, Maruf Adewole, Hongwei Bran Li, Anahita Fathi Kazerooni, Nourel Hoda Tahon, Udunna Anazodo, Ahmed W. Moawad, Bjoern Menze, Marius George Linguraru, Mariam Aboian, Benedikt Wiestler, Ujjwal Baid, Gian-Marco Conte, Andreas M. Rauschecker, Ayman Nada, Aly H. Abayazeed, Raymond Huang, Maria Correia de Verdier, Jeffrey D. Rudie, Spyridon Bakas, Evan Calabrese,
- Abstract summary: The 2024 Brain Tumor Meningioma Radiotherapy (BraTS-MEN-RT) challenge aimed to advance automated segmentation algorithms.<n>We describe the design and results from the BraTS-MEN-RT challenge.
- Score: 45.3253187215396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The 2024 Brain Tumor Segmentation Meningioma Radiotherapy (BraTS-MEN-RT) challenge aimed to advance automated segmentation algorithms using the largest known multi-institutional dataset of 750 radiotherapy planning brain MRIs with expert-annotated target labels for patients with intact or postoperative meningioma that underwent either conventional external beam radiotherapy or stereotactic radiosurgery. Each case included a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space, accompanied by a single-label "target volume" representing the gross tumor volume (GTV) and any at-risk post-operative site. Target volume annotations adhered to established radiotherapy planning protocols, ensuring consistency across cases and institutions, and were approved by expert neuroradiologists and radiation oncologists. Six participating teams developed, containerized, and evaluated automated segmentation models using this comprehensive dataset. Team rankings were assessed using a modified lesion-wise Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance (95HD). The best reported average lesion-wise DSC and 95HD was 0.815 and 26.92 mm, respectively. BraTS-MEN-RT is expected to significantly advance automated radiotherapy planning by enabling precise tumor segmentation and facilitating tailored treatment, ultimately improving patient outcomes. We describe the design and results from the BraTS-MEN-RT challenge.
Related papers
- MGH Radiology Llama: A Llama 3 70B Model for Radiology [50.42811030970618]
This paper presents an advanced radiology-focused large language model: MGH Radiology Llama.
It is developed using the Llama 3 70B model, building upon previous domain-specific models like Radiology-GPT and Radiology-Llama2.
Our evaluation, incorporating both traditional metrics and a GPT-4-based assessment, highlights the enhanced performance of this work over general-purpose LLMs.
arXiv Detail & Related papers (2024-08-13T01:30:03Z) - The 2024 Brain Tumor Segmentation (BraTS) Challenge: Glioma Segmentation on Post-treatment MRI [5.725734864357991]
The 2024 Brain Tumor (BraTS) challenge on post-treatment glioma MRI will provide a community standard and benchmark for state-of-the-art automated segmentation models.
Challenge competitors will develop automated segmentation models to predict four distinct tumor sub-regions.
Models will be evaluated on separate validation and test datasets.
arXiv Detail & Related papers (2024-05-28T17:07:55Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.
The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023:
Intracranial Meningioma [4.435336201147607]
The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models.
Challenge competitors will develop automated segmentation models to predict three distinct meningioma sub-regions on MRI.
arXiv Detail & Related papers (2023-05-12T17:52:36Z) - Segmentation of glioblastomas in early post-operative multi-modal MRI
with deep neural networks [33.51490233427579]
Two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task.
The best performance achieved was a 61% Dice score, and the best classification performance was about 80% balanced accuracy.
The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.
arXiv Detail & Related papers (2023-04-18T10:14:45Z) - Segmentation of Planning Target Volume in CT Series for Total Marrow
Irradiation Using U-Net [0.0]
We present a deep learning-based auto-contouring method for segmenting Planning Target Volume (PTV) for TMLI treatment using the U-Net architecture.
Our findings are a preliminary but significant step towards developing a segmentation model that has the potential to save radiation oncologists a considerable amount of time.
arXiv Detail & Related papers (2023-04-05T10:40:37Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - Integrative Imaging Informatics for Cancer Research: Workflow Automation
for Neuro-oncology (I3CR-WANO) [0.12175619840081271]
We propose an artificial intelligence-based solution for the aggregation and processing of multisequence neuro-Oncology MRI data.
Our end-to-end framework i) classifies MRI sequences using an ensemble classifier, ii) preprocesses the data in a reproducible manner, and iv) delineates tumor tissue subtypes.
It is robust to missing sequences and adopts an expert-in-the-loop approach, where the segmentation results may be manually refined by radiologists.
arXiv Detail & Related papers (2022-10-06T18:23:42Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Ensemble CNN Networks for GBM Tumors Segmentation using Multi-parametric
MRI [0.0]
We propose a new aggregation of two deep learning frameworks namely, DeepSeg and nnU-Net for automatic glioblastoma recognition in pre-operative mpMRI.
Our ensemble method obtains Dice similarity scores of 92.00, 87.33, and 84.10 and Hausdorff Distances of 3.81, 8.91, and 16.02 for the enhancing tumor, tumor core, and whole tumor regions.
arXiv Detail & Related papers (2021-12-13T10:51:20Z) - Automatic Brain Tumor Segmentation with Scale Attention Network [1.7767466724342065]
Multimodal Brain Tumor Challenge 2020 (BraTS 2020) provides a common platform for comparing different automatic algorithms on multi-parametric Magnetic Resonance Imaging (mpMRI)
We propose a dynamic scale attention mechanism that incorporates low-level details with high-level semantics from feature maps at different scales.
Our framework was trained using the 369 challenge training cases provided by BraTS 2020, and achieved an average Dice Similarity Coefficient (DSC) of 0.8828, 0.8433 and 0.8177, as well as 95% Hausdorff distance (in millimeter) of 5.2176, 17.9697 and 13.4298 on 166 testing cases for whole tumor
arXiv Detail & Related papers (2020-11-06T04:45:49Z) - Machine-Learning-Based Multiple Abnormality Prediction with Large-Scale
Chest Computed Tomography Volumes [64.21642241351857]
We curated and analyzed a chest computed tomography (CT) data set of 36,316 volumes from 19,993 unique patients.
We developed a rule-based method for automatically extracting abnormality labels from free-text radiology reports.
We also developed a model for multi-organ, multi-disease classification of chest CT volumes.
arXiv Detail & Related papers (2020-02-12T00:59:23Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.