論文の概要: Modeling the Feedback of AI Price Estimations on Actual Market Values
- arxiv url: http://arxiv.org/abs/2405.18434v1
- Date: Wed, 13 Mar 2024 03:44:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 08:19:53.653073
- Title: Modeling the Feedback of AI Price Estimations on Actual Market Values
- Title(参考訳): 実市場価値に基づくAI価格推定のフィードバックのモデル化
- Authors: Viorel Silaghi, Zobaida Alssadi, Ben Mathew, Majed Alotaibi, Ali Alqarni, Marius Silaghi,
- Abstract要約: 人工知能が生成した情報の公開は、市場を永遠に変えることができる。
不動産超インフレは新しい現象ではなく、12年間にわたって一貫したほぼ単調な持続性である。
不動産インフレ率に対するMREE圧力が絶対的なMREE推定誤差と相関しているという予想をシミュレーションで検証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Public availability of Artificial Intelligence generated information can change the markets forever, and its factoring into economical dynamics may take economists by surprise, out-dating models and schools of thought. Real estate hyper-inflation is not a new phenomenon but its consistent and almost monotonous persistence over 12 years, coinciding with prominence of public estimation information from Zillow, a successful Mass Real Estate Estimator (MREE), could not escape unobserved. What we model is a repetitive theoretical game between the MREE and the home owners, where each player has secret information and expertise. If the intention is to keep housing affordable and maintain old American lifestyle with broad home-ownership, new challenges are defined. Simulations show that a simple restriction of MREE-style price estimation availability to opt-in properties may help partially reduce feedback loop by acting on its likely causes, as suggested by experimental simulation models. The conjecture that the MREE pressure on real estate inflation rate is correlated with the absolute MREE estimation errors, which is logically explainable, is then validated in simulations.
- Abstract(参考訳): 人工知能(AI)が生み出す情報の公開は、市場を永久に変化させる可能性がある。
不動産超インフレは新しい現象ではないが、その一貫したほぼ単調な持続性は12年間にわたって続き、成功しているMREE (Mass Real Estate Estimator) のZillow による公的推定情報の有名さと一致した。
私たちがモデルとしているのは、MREEとホームオーナーの繰り返し理論ゲームであり、各プレイヤーは秘密の情報と専門知識を持っている。
住宅を手頃な価格で維持し、住宅所有者の広い旧アメリカのライフスタイルを維持することを目的としている場合、新しい課題が定義される。
シミュレーションにより、オプトイン特性に対するMREEスタイルの価格推定能力の簡易な制限は、実験シミュレーションモデルによって示唆されるように、その潜在的な原因に作用することで、フィードバックループを部分的に減少させる可能性があることが示されている。
不動産インフレ率に対するMREE圧力が、論理的に説明可能な絶対的なMREE推定誤差と相関しているという予想がシミュレーションで検証される。
関連論文リスト
- On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
決定論的MoEモデルに基づく最小二乗推定器(LSE)の性能について検討する。
我々は,多種多様な専門家関数の収束挙動を特徴付けるために,強い識別可能性という条件を確立する。
本研究は,専門家の選択に重要な意味を持つ。
論文 参考訳(メタデータ) (2024-02-05T12:31:18Z) - Utilizing Model Residuals to Identify Rental Properties of Interest: The
Price Anomaly Score (PAS) and Its Application to Real-time Data in Manhattan [0.0]
2023年9月現在、マンハッタンで利用可能なすべての不動産のデータを収集し、モデル残高の理解を深めることを目的としている。
これらの知見を活用するために、不規則に予測される価格のバウンダリを捕捉できる指標であるPrice Anomaly Score(PAS)を導入する。
論文 参考訳(メタデータ) (2023-11-29T00:14:30Z) - Understanding, Predicting and Better Resolving Q-Value Divergence in
Offline-RL [86.0987896274354]
まず、オフラインRLにおけるQ値推定のばらつきの主な原因として、基本パターン、自己励起を同定する。
そこで本研究では,Q-network の学習における進化特性を測定するために,SEEM(Self-Excite Eigen Value Measure)尺度を提案する。
われわれの理論では、訓練が早期に発散するかどうかを確実に決定できる。
論文 参考訳(メタデータ) (2023-10-06T17:57:44Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Neural Stochastic Agent-Based Limit Order Book Simulation: A Hybrid
Methodology [6.09170287691728]
現代の金融取引所は電子的リミット・オーダー・ブック(LOB)を使用して入札を保管し、特定の金融資産の受注を要求する。
ニューラルポイントモデルを用いて過去のLOBデータに基づいて事前訓練されたニューラルバックグラウンドトレーサによるマーケットイベントのロジックの集約を表現するハイブリッドLOBシミュレーションと、他のトレーサとのマルチエージェントシミュレーションに背景トレーサを組み込んだハイブリッドLOBシミュレーションを提案する。
このスタイル化された事実は残っており、実市場の経験的観察に則った秩序流の影響と財政的放牧行動を示す。
論文 参考訳(メタデータ) (2023-02-28T20:53:39Z) - Predicting housing prices and analyzing real estate market in the
Chicago suburbs using Machine Learning [0.0]
パンデミック後の市場はシカゴ郊外地域でボラティリティを経験しており、住宅価格に大きな影響を与えた。
この研究は、ナパービル/ボリングブルック不動産市場において、これらの住宅属性に基づいて、機械学習モデルを用いて不動産価格を予測するために行われた。
その結果,XGBoostモデルでは,ポストパンデミック条件による付加的なボラティリティにもかかわらず,住宅価格の予測に最適であることが判明した。
論文 参考訳(メタデータ) (2022-10-12T14:41:53Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Multi-Asset Spot and Option Market Simulation [52.77024349608834]
正規化フローに基づく1つの基盤となる1つのマーケットシミュレータを現実的に構築する。
本研究では, 正規化流れの条件付き可逆性を活用し, 独立シミュレータの連立分布をキャリブレーションするスケーラブルな手法を提案する。
論文 参考訳(メタデータ) (2021-12-13T17:34:28Z) - Towards robust and speculation-reduction real estate pricing models
based on a data-driven strategy [0.0]
本稿では,機械学習に基づくデータ駆動型不動産価格モデルを提案する。
2016年から2020年にかけて収集されたBogot'aの178,865のフラットリストでモデルを検証した。
その結果、提案した最先端モデルが不動産価格を推定する上で堅牢で正確であることが示唆された。
論文 参考訳(メタデータ) (2020-11-26T15:54:07Z) - Machine Learning Approaches to Real Estate Market Prediction Problem: A
Case Study [0.0]
本研究は,2010年1月から2019年11月までの10年間の実際のデータセットを用いた不動産価格分類モデルを開発する。
開発モデルは不動産投資家、住宅ローン貸付業者、金融機関がより良い情報的判断を下すよう促すことができる。
論文 参考訳(メタデータ) (2020-08-22T22:28:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。