論文の概要: Discovering deposition process regimes: leveraging unsupervised learning for process insights, surrogate modeling, and sensitivity analysis
- arxiv url: http://arxiv.org/abs/2405.18444v1
- Date: Fri, 24 May 2024 14:10:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 22:22:47.110070
- Title: Discovering deposition process regimes: leveraging unsupervised learning for process insights, surrogate modeling, and sensitivity analysis
- Title(参考訳): 堆積プロセス体制の解明--プロセスインサイト、代理モデリング、感度分析に教師なし学習を活用する
- Authors: Geremy Loachamín Suntaxi, Paris Papavasileiou, Eleni D. Koronaki, Dimitrios G. Giovanis, Georgios Gakis, Ioannis G. Aviziotis, Martin Kathrein, Gabriele Pozzetti, Christoph Czettl, Stéphane P. A. Bordas, Andreas G. Boudouvis,
- Abstract要約: 本研究は,化学気相沈着(CVD)反応器の堆積過程を解明するための包括的アプローチを導入する。
我々の方法論は、プロセスの異なる状態に対応する"アウトカム"のクラスタを特定するために、詳細なCFDモデルによって導かれるプロセス結果に依存しています。
この現象はArrheniusプロット解析により実験的に検証され,本手法の有効性が確認された。
- 参考スコア(独自算出の注目度): 0.1558630944877332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work introduces a comprehensive approach utilizing data-driven methods to elucidate the deposition process regimes in Chemical Vapor Deposition (CVD) reactors and the interplay of physical mechanism that dominate in each one of them. Through this work, we address three key objectives. Firstly, our methodology relies on process outcomes, derived by a detailed CFD model, to identify clusters of "outcomes" corresponding to distinct process regimes, wherein the relative influence of input variables undergoes notable shifts. This phenomenon is experimentally validated through Arrhenius plot analysis, affirming the efficacy of our approach. Secondly, we demonstrate the development of an efficient surrogate model, based on Polynomial Chaos Expansion (PCE), that maintains accuracy, facilitating streamlined computational analyses. Finally, as a result of PCE, sensitivity analysis is made possible by means of Sobol' indices, that quantify the impact of process inputs across identified regimes. The insights gained from our analysis contribute to the formulation of hypotheses regarding phenomena occurring beyond the transition regime. Notably, the significance of temperature even in the diffusion-limited regime, as evidenced by the Arrhenius plot, suggests activation of gas phase reactions at elevated temperatures. Importantly, our proposed methods yield insights that align with experimental observations and theoretical principles, aiding decision-making in process design and optimization. By circumventing the need for costly and time-consuming experiments, our approach offers a pragmatic pathway towards enhanced process efficiency. Moreover, this study underscores the potential of data-driven computational methods for innovating reactor design paradigms.
- Abstract(参考訳): 本研究は, 化学気相堆積(CVD)反応器における沈着過程の解明にデータ駆動方式を応用した包括的アプローチと, それぞれに支配的な物理機構の相互作用を導入する。
この作業を通じて、我々は3つの重要な目標に対処する。
第一に,本手法は, 入力変数の相対的影響を顕著に変化させるプロセス機構に対応する「成果」のクラスタを特定するために, 詳細なCFDモデルによって導かれるプロセス結果に依存している。
この現象はArrheniusプロット解析により実験的に検証され,本手法の有効性が確認された。
次に,PCE(Polynomial Chaos Expansion)に基づく効率的なサロゲートモデルの開発について述べる。
最後に、PCEの結果、ソボの指標を用いて感度分析が可能となり、特定されたレシフィケーション全体にわたるプロセス入力の影響を定量化する。
この分析から得られた知見は、遷移体制を超えた現象に関する仮説の定式化に寄与する。
特に、Arrheniusプロットで証明されているように、拡散制限状態においても温度の重要性は、高温でのガス相反応の活性化を示唆している。
提案手法は, プロセス設計と最適化における意思決定を支援するため, 実験的な観察と理論原理に整合した洞察を導出する。
コストと時間のかかる実験の必要性を回避することで、我々のアプローチはプロセス効率を向上させるための実践的な道筋を提供する。
さらに, この研究は, 原子炉設計パラダイムを革新するためのデータ駆動型計算手法の可能性を強調した。
関連論文リスト
- Reward driven workflows for unsupervised explainable analysis of phases and ferroic variants from atomically resolved imaging data [14.907891992968361]
本研究では,教師なしML手法の鍵ハイパーパラメータを最適化するために,報酬駆動型アプローチが利用できることを示す。
このアプローチにより、特定の物理的な振る舞いに最も適したローカルな記述子を見つけることができる。
また、変分オートエンコーダ(VAE)を介して変動の構造因子を乱すよう誘導される報酬も拡張する。
論文 参考訳(メタデータ) (2024-11-19T16:18:20Z) - On the Design of Ethereum Data Availability Sampling: A Comprehensive Simulation Study [0.0]
本稿では,データアベイラビリティサンプリング(DAS)と分散システム内のシャーディング機構をシミュレーションに基づく解析により詳細に調査する。
ブロックチェーン技術と分散ネットワークにおける重要な概念であるDASは、その複雑さを解明し、システムパフォーマンスへの影響を評価するために、徹底的に調査されている。
シミュレーション環境で一連の実験を行い、理論的な定式化を検証し、DASパラメータの相互作用を識別する。
論文 参考訳(メタデータ) (2024-07-25T14:47:41Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
パラメータ効率の細かいチューニング(PEFT)は、パラメータの選択したサブセットを最適化し、残りを固定し、計算とストレージのオーバーヘッドを大幅に削減することに焦点を当てている。
分解の観点からそれらを分離することで、すべてのアプローチを統一する第一歩を踏み出します。
本稿では,PEFT技術の性能向上を目的とした,単純かつ効果的なフレームワークとともに,新しい2つのPEFT手法を提案する。
論文 参考訳(メタデータ) (2024-07-07T15:44:42Z) - Adjoint Sensitivity Analysis on Multi-Scale Bioprocess Stochastic Reaction Network [2.6130735302655554]
本稿では,機械的モデルパラメータの学習を高速化するための随伴感度アプローチを提案する。
本稿では,多スケールのバイオプロセス力学モデルを表す酵素解析(SA)について考察する。
論文 参考訳(メタデータ) (2024-05-07T05:06:45Z) - PCA for Point Processes [3.4248731707266264]
本稿では,複製点過程の解析のための新しい統計フレームワークを提案する。
点過程の現実化をランダムな測度として扱うことにより、機能解析の観点を採用する。
主要な理論的貢献は、ランダム測度に対するカルフン・ローブ拡大の確立である。
論文 参考訳(メタデータ) (2024-04-30T15:57:18Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
因果関係を考慮したエントロピー(entropy)という用語を導入し,効率的な探索を行うための潜在的影響の高いアクションを効果的に識別し,優先順位付けする。
提案アルゴリズムであるACE:Off-policy Actor-critic with Causality-aware Entropy regularizationは,29種類の連続制御タスクに対して,大幅な性能上の優位性を示す。
論文 参考訳(メタデータ) (2024-02-22T13:22:06Z) - Optimizing $CO_{2}$ Capture in Pressure Swing Adsorption Units: A Deep
Neural Network Approach with Optimality Evaluation and Operating Maps for
Decision-Making [0.0]
本研究は,二酸化炭素捕捉用加圧湿式吸着ユニットの高機能化に焦点をあてる。
2つのディープニューラルネットワーク(DNN)モデルからなるマルチインプット・シングルアウトプット(MISO)フレームワークを開発し,実装した。
このアプローチは、実行可能な運用領域(FOR)を明確にし、最適な意思決定シナリオのスペクトルを強調した。
論文 参考訳(メタデータ) (2023-12-06T19:43:37Z) - Deep Learning-based Analysis of Basins of Attraction [49.812879456944984]
本研究は,様々な力学系における盆地の複雑さと予測不可能性を特徴づけることの課題に対処する。
主な焦点は、この分野における畳み込みニューラルネットワーク(CNN)の効率性を示すことである。
論文 参考訳(メタデータ) (2023-09-27T15:41:12Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Energy-based View of Retrosynthesis [70.66156081030766]
エネルギーモデルとしてシーケンスおよびグラフベースの手法を統一するフレームワークを提案する。
本稿では,ベイズ前方および後方予測に対して一貫した訓練を行うフレームワーク内での新しい二重変種を提案する。
このモデルは、反応型が不明なテンプレートフリーアプローチに対して、最先端の性能を9.6%向上させる。
論文 参考訳(メタデータ) (2020-07-14T18:51:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。