論文の概要: Reward driven workflows for unsupervised explainable analysis of phases and ferroic variants from atomically resolved imaging data
- arxiv url: http://arxiv.org/abs/2411.12612v1
- Date: Tue, 19 Nov 2024 16:18:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:35:16.579362
- Title: Reward driven workflows for unsupervised explainable analysis of phases and ferroic variants from atomically resolved imaging data
- Title(参考訳): 原子画像データからの位相・強磁性変態の教師なし説明可能な解析のための逆向き駆動ワークフロー
- Authors: Kamyar Barakati, Yu Liu, Chris Nelson, Maxim A. Ziatdinov, Xiaohang Zhang, Ichiro Takeuchi, Sergei V. Kalinin,
- Abstract要約: 本研究では,教師なしML手法の鍵ハイパーパラメータを最適化するために,報酬駆動型アプローチが利用できることを示す。
このアプローチにより、特定の物理的な振る舞いに最も適したローカルな記述子を見つけることができる。
また、変分オートエンコーダ(VAE)を介して変動の構造因子を乱すよう誘導される報酬も拡張する。
- 参考スコア(独自算出の注目度): 14.907891992968361
- License:
- Abstract: Rapid progress in aberration corrected electron microscopy necessitates development of robust methods for the identification of phases, ferroic variants, and other pertinent aspects of materials structure from imaging data. While unsupervised methods for clustering and classification are widely used for these tasks, their performance can be sensitive to hyperparameter selection in the analysis workflow. In this study, we explore the effects of descriptors and hyperparameters on the capability of unsupervised ML methods to distill local structural information, exemplified by discovery of polarization and lattice distortion in Sm doped BiFeO3 (BFO) thin films. We demonstrate that a reward-driven approach can be used to optimize these key hyperparameters across the full workflow, where rewards were designed to reflect domain wall continuity and straightness, ensuring that the analysis aligns with the material's physical behavior. This approach allows us to discover local descriptors that are best aligned with the specific physical behavior, providing insight into the fundamental physics of materials. We further extend the reward driven workflows to disentangle structural factors of variation via optimized variational autoencoder (VAE). Finally, the importance of well-defined rewards was explored as a quantifiable measure of success of the workflow.
- Abstract(参考訳): 収差補正電子顕微鏡の急速な進歩は、画像データから材料構造の相、強磁性変種、その他の関連する側面を識別するための堅牢な方法の開発を必要とする。
クラスタリングと分類のための教師なしの手法はこれらのタスクに広く使われているが、解析ワークフローにおけるハイパーパラメータ選択に敏感である。
本研究では,SmドープBiFeO3(BFO)薄膜の偏光および格子歪みの発見によって実証された局所構造情報を抽出するための教師なしML法の性能に及ぼす記述子とハイパーパラメータの影響について検討する。
我々は、報酬駆動のアプローチが、これらの主要なハイパーパラメーターをフルワークフロー全体にわたって最適化するために使用できることを示し、報酬は、ドメイン壁の連続性と直線性を反映するように設計され、分析が材料の物理的挙動と一致することを保証する。
このアプローチにより、特定の物理的挙動に最も適した局所的な記述子を発見し、材料の基礎物理学の洞察を与えることができる。
さらに、報酬駆動ワークフローを拡張して、最適化された変分オートエンコーダ(VAE)によって変動の構造的要因を分散させる。
最後に、適切に定義された報酬の重要性を、ワークフローの成功の定量的尺度として検討した。
関連論文リスト
- Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
本稿では,エンコーダのみのトランスフォーマーアーキテクチャのアテンションヘッドにおける意味的意味パターンについて検討する。
注意重みの修正はトレーニングプロセスの促進だけでなく,最適化の安定性の向上にも寄与する。
論文 参考訳(メタデータ) (2024-09-20T07:41:47Z) - Unsupervised Reward-Driven Image Segmentation in Automated Scanning Transmission Electron Microscopy Experiments [0.22795086293129713]
走査透過電子顕微鏡(STEM)における自動実験は、人間の解釈、意思決定、サイト選択分光法、原子操作のためのデータ表現を最適化するために、高速な画像分割を必要とする。
本稿では,STEMにおけるオンザフライ画像解析のための報酬駆動最適化ワークフローの運用とベンチマークを行う。
この教師なしのアプローチは、人間のラベルに依存しておらず、完全に説明可能であるため、はるかに堅牢である。
論文 参考訳(メタデータ) (2024-09-19T04:51:13Z) - Discovering deposition process regimes: leveraging unsupervised learning for process insights, surrogate modeling, and sensitivity analysis [0.1558630944877332]
本研究は,化学気相沈着(CVD)反応器の堆積過程を解明するための包括的アプローチを導入する。
我々の方法論は、プロセスの異なる状態に対応する"アウトカム"のクラスタを特定するために、詳細なCFDモデルによって導かれるプロセス結果に依存しています。
この現象はArrheniusプロット解析により実験的に検証され,本手法の有効性が確認された。
論文 参考訳(メタデータ) (2024-05-24T14:10:22Z) - Physics-based reward driven image analysis in microscopy [5.581609660066545]
本稿では,画像解析を動的に最適化するReward Functionの概念に基づく方法論を提案する。
Reward関数は、実験目標とより広いコンテキストと密接に整合するように設計されている。
高次元クラスタリングの物理駆動型報酬関数とアクション空間を作成することにより,部分非秩序領域の同定に向けた報酬関数のアプローチを拡張した。
論文 参考訳(メタデータ) (2024-04-22T12:55:04Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
本稿では,物理にヒントを得たハイブリットアテンション(PIHA)機構と,この問題に対処するためのOFA評価プロトコルを提案する。
PIHAは、物理的情報の高レベルなセマンティクスを活用して、ターゲットの局所的なセマンティクスを認識した特徴群を活性化し、誘導する。
提案手法は,ASCパラメータが同じ12のテストシナリオにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-27T14:39:41Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Combining Variational Autoencoders and Physical Bias for Improved
Microscopy Data Analysis [0.0]
本稿では,データ内の変数の因子を分散させる物理拡張機械学習手法を提案する。
本手法はNiO-LSMO, BiFeO3, グラフェンなど様々な材料に適用される。
その結果,大量の画像データから有意な情報を抽出する手法の有効性が示された。
論文 参考訳(メタデータ) (2023-02-08T17:35:38Z) - Designing Robust Transformers using Robust Kernel Density Estimation [47.494628752936165]
異なるトランスフォーマーアーキテクチャに組み込むことができる一連の自己注意機構を導入する。
次に、言語モデリングと画像分類タスクについて広範な実証的研究を行う。
論文 参考訳(メタデータ) (2022-10-11T21:39:52Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
本稿では,3次元分子構造の大規模データセットを平衡に利用した事前学習手法について述べる。
近年のノイズレギュラー化の進展に触発されて, 事前学習の目的は, 雑音の除去に基づくものである。
論文 参考訳(メタデータ) (2022-05-31T22:28:34Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
高忠実度分子シミュレーションデータから連続体モデルを発見するためのフレームワークを提案する。
提案手法は、モーダル空間における制御物理のニューラルネットワークパラメタライゼーションを適用する。
局所・非局所拡散過程や単相・多相流など,様々な物理分野におけるフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-09-25T01:13:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。