Anomaly detection for the identification of volcanic unrest in satellite imagery
- URL: http://arxiv.org/abs/2405.18487v1
- Date: Tue, 28 May 2024 18:00:10 GMT
- Title: Anomaly detection for the identification of volcanic unrest in satellite imagery
- Authors: Robert Gabriel Popescu, Nantheera Anantrasirichai, Juliet Biggs,
- Abstract summary: This paper explores the use of unsupervised deep learning on satellite data for the purpose of identifying volcanic deformation as anomalies.
Our detector is based on Patch Distribution Modeling (PaDiM), and the detection performance is enhanced with a weighted distance.
- Score: 2.642212767247493
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Satellite images have the potential to detect volcanic deformation prior to eruptions, but while a vast number of images are routinely acquired, only a small percentage contain volcanic deformation events. Manual inspection could miss these anomalies, and an automatic system modelled with supervised learning requires suitably labelled datasets. To tackle these issues, this paper explores the use of unsupervised deep learning on satellite data for the purpose of identifying volcanic deformation as anomalies. Our detector is based on Patch Distribution Modeling (PaDiM), and the detection performance is enhanced with a weighted distance, assigning greater importance to features from deeper layers. Additionally, we propose a preprocessing approach to handle noisy and incomplete data points. The final framework was tested with five volcanoes, which have different deformation characteristics and its performance was compared against the supervised learning method for volcanic deformation detection.
Related papers
- Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - A benchmark dataset for deep learning-based airplane detection: HRPlanes [3.5297361401370044]
We create a novel airplane detection dataset called High Resolution Planes (HRPlanes) by using images from Google Earth (GE)
HRPlanes include GE images of several different airports across the world to represent a variety of landscape, seasonal and satellite geometry conditions obtained from different satellites.
Our preliminary results show that the proposed dataset can be a valuable data source and benchmark data set for future applications.
arXiv Detail & Related papers (2022-04-22T23:49:44Z) - Self-supervised Contrastive Learning for Volcanic Unrest Detection [4.152165675786138]
Ground deformation measured from Interferometric Synthetic Aperture Radar (InSAR) data is considered a sign of volcanic unrest.
Recent studies have shown the potential of using Sentinel-1 InSAR data and supervised deep learning (DL) methods for the detection of volcanic deformation signals.
This letter proposes the use of self-supervised contrastive learning to learn quality visual representations hidden in unlabeled InSAR data.
arXiv Detail & Related papers (2022-02-08T17:54:51Z) - Learning class prototypes from Synthetic InSAR with Vision Transformers [2.41710192205034]
Detection of early signs of volcanic unrest is critical for assessing volcanic hazard.
We propose a novel deep learning methodology that exploits a rich source of synthetically generated interferograms.
We report detection accuracy that surpasses the state of the art on volcanic unrest detection.
arXiv Detail & Related papers (2022-01-09T14:03:00Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
We propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block.
Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field.
We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video.
arXiv Detail & Related papers (2021-11-17T13:30:31Z) - On-board Volcanic Eruption Detection through CNNs and Satellite
Multispectral Imagery [59.442493247857755]
Authors propose a first prototype and a study of feasibility for an AI model to be 'loaded' on board.
As a case study, the authors decided to investigate the detection of volcanic eruptions as a method to swiftly produce alerts.
Two Convolutional Neural Networks have been proposed and created, also showing how to correctly implement them on real hardware.
arXiv Detail & Related papers (2021-06-29T11:52:43Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - End-to-End Intelligent Framework for Rockfall Detection [1.8594711725515676]
Rockfall detection is a crucial procedure in the field of geology, which helps to reduce the associated risks.
Currently, geologists identify rockfall events almost manually utilizing point cloud and imagery data obtained from different caption devices such as Terrestrial Laser Scanner or digital cameras.
This paper addresses this issue and provides an intelligent framework for rockfall event detection for any individual working in the intersection of the domain geology and decision support systems.
arXiv Detail & Related papers (2021-02-12T12:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.