論文の概要: Training More Robust Classification Model via Discriminative Loss and Gaussian Noise Injection
- arxiv url: http://arxiv.org/abs/2405.18499v3
- Date: Fri, 19 Sep 2025 09:52:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-22 14:11:06.749491
- Title: Training More Robust Classification Model via Discriminative Loss and Gaussian Noise Injection
- Title(参考訳): 識別損失とガウス雑音注入によるロバスト分類モデルの訓練
- Authors: Hai-Vy Nguyen, Fabrice Gamboa, Sixin Zhang, Reda Chhaibi, Serge Gratton, Thierry Giaccone,
- Abstract要約: 本稿では,クラス内コンパクト性を明示する最小層に適用した損失関数を提案する。
また、ノイズの多いデータクラスタをクリーンなクラスタに近づける、クラスワイズな機能アライメント機構を提案する。
提案手法は, クリーンなデータに対して高い精度を維持しながら, 各種摂動に対するモデルロバスト性を大幅に強化する。
- 参考スコア(独自算出の注目度): 7.535952418691443
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Robustness of deep neural networks to input noise remains a critical challenge, as naive noise injection often degrades accuracy on clean (uncorrupted) data. We propose a novel training framework that addresses this trade-off through two complementary objectives. First, we introduce a loss function applied at the penultimate layer that explicitly enforces intra-class compactness and increases the margin to analytically defined decision boundaries. This enhances feature discriminativeness and class separability for clean data. Second, we propose a class-wise feature alignment mechanism that brings noisy data clusters closer to their clean counterparts. Furthermore, we provide a theoretical analysis demonstrating that improving feature stability under additive Gaussian noise implicitly reduces the curvature of the softmax loss landscape in input space, as measured by Hessian eigenvalues.This thus naturally enhances robustness without explicit curvature penalties. Conversely, we also theoretically show that lower curvatures lead to more robust models. We validate the effectiveness of our method on standard benchmarks and our custom dataset. Our approach significantly reinforces model robustness to various perturbations while maintaining high accuracy on clean data, advancing the understanding and practice of noise-robust deep learning.
- Abstract(参考訳): ノイズ入力に対するディープニューラルネットワークのロバスト性は依然として重要な課題であり、ノイズ注入はクリーンな(非破壊的な)データに対して精度を低下させることが多い。
2つの相補的な目的を通じて、このトレードオフに対処する新しいトレーニングフレームワークを提案する。
まず、クラス内コンパクト性を明示的に強制し、分析的に定義された決定境界までマージンを増大させる、最小層に適用される損失関数を導入する。
これにより、クリーンデータに対する特徴識別性とクラス分離性が向上する。
第二に、ノイズの多いデータクラスタをクリーンなクラスタに近づける、クラスワイドな機能アライメント機構を提案する。
さらに,加法ガウス雑音による特徴安定性の向上が,ヘッセン固有値の測定による入力空間におけるソフトマックス損失ランドスケープの曲率を暗黙的に減少させることを示す理論解析を行った。
逆に、より低い曲率がより堅牢なモデルをもたらすことも理論的に示している。
提案手法の有効性を標準ベンチマークとカスタムデータセットで検証する。
提案手法は, 各種摂動に対するモデルロバスト性を大幅に強化するとともに, クリーンデータに対する高い精度を維持し, 難聴深層学習の理解と実践を促進する。
関連論文リスト
- Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric [99.19559537966538]
DMLは、分類、クラスタリング、検索といった下流タスクのための識別可能な高次元埋め込み空間を学習することを目的としている。
埋め込み空間の構造を維持し,特徴の崩壊を避けるために,反崩壊損失と呼ばれる新しい損失関数を提案する。
ベンチマークデータセットの総合実験により,提案手法が既存の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-03T13:44:20Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - Learning Towards the Largest Margins [83.7763875464011]
損失関数は、クラスとサンプルの両方の最大のマージンを促進するべきである。
この原則化されたフレームワークは、既存のマージンベースの損失を理解し、解釈するための新しい視点を提供するだけでなく、新しいツールの設計を導くことができます。
論文 参考訳(メタデータ) (2022-06-23T10:03:03Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
本稿では,カーネル手法のコンテキストにおいて,現象を正確に特徴付けることができることを示す。
分離可能なヒルベルト空間における2次対象の最小化を考慮し、早期停止の場合、学習速度の選択が得られた解のスペクトル分解に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-02-28T13:01:04Z) - Discriminability-enforcing loss to improve representation learning [20.4701676109641]
我々は、個々の高次特徴のエントロピーを最小化するために、ジニ不純物にインスパイアされた新しい損失項を導入する。
我々のGini損失は高い差別的特徴をもたらすが、高レベルの特徴の分布がクラスの分布と一致していることを保証するものではない。
実験結果から,新たな損失項をトレーニング目標に組み込むことで,クロスエントロピー単独でトレーニングしたモデルよりも一貫して優れた結果が得られた。
論文 参考訳(メタデータ) (2022-02-14T22:31:37Z) - Understanding Square Loss in Training Overparametrized Neural Network
Classifiers [31.319145959402462]
過度にパラメータ化されたニューラルネットワークでどのように機能するかを体系的に検討することにより、分類における二乗損失の理論的理解に寄与する。
クラスが分離可能か否かに応じて2つのケースを考慮する。一般的な非分離可能の場合、誤分類率と校正誤差の両方について、高速収束率が確立される。
結果として得られるマージンはゼロから下界であることが証明され、ロバスト性の理論的な保証を提供する。
論文 参考訳(メタデータ) (2021-12-07T12:12:30Z) - Distribution of Classification Margins: Are All Data Equal? [61.16681488656473]
我々は理論的に動機付け、トレーニングセット上のマージン分布の曲線の下の領域が実際は一般化のよい尺度であることを実証的に示す。
結果として生じる"高いキャパシティ"機能のサブセットは、異なるトレーニング実行間で一貫性がない。
論文 参考訳(メタデータ) (2021-07-21T16:41:57Z) - Fundamental Limits and Tradeoffs in Invariant Representation Learning [99.2368462915979]
多くの機械学習アプリケーションは、2つの競合する目標を達成する表現を学習する。
ミニマックスゲーム理論の定式化は、精度と不変性の基本的なトレードオフを表す。
分類と回帰の双方において,この一般的かつ重要な問題を情報論的に解析する。
論文 参考訳(メタデータ) (2020-12-19T15:24:04Z) - $\sigma^2$R Loss: a Weighted Loss by Multiplicative Factors using
Sigmoidal Functions [0.9569316316728905]
我々は,二乗還元損失(sigma2$R損失)と呼ばれる新たな損失関数を導入する。
我々の損失は明らかな直観と幾何学的解釈を持ち、我々の提案の有効性を実験によって実証する。
論文 参考訳(メタデータ) (2020-09-18T12:34:40Z) - Adversarially Robust Learning via Entropic Regularization [31.6158163883893]
我々は、敵対的に堅牢なディープニューラルネットワークを訓練するための新しいアルゴリズムATENTを提案する。
我々の手法は、頑健な分類精度の観点から、競争力(またはより良い)性能を達成する。
論文 参考訳(メタデータ) (2020-08-27T18:54:43Z) - Towards Certified Robustness of Distance Metric Learning [53.96113074344632]
我々は,距離学習アルゴリズムの一般化とロバスト性を改善するために,入力空間に逆のマージンを付与することを提唱する。
アルゴリズム的ロバスト性の理論手法を用いることにより,拡張マージンは一般化能力に有益であることを示す。
論文 参考訳(メタデータ) (2020-06-10T16:51:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。