論文の概要: Fast Explainability via Feasible Concept Sets Generator
- arxiv url: http://arxiv.org/abs/2405.18664v1
- Date: Wed, 29 May 2024 00:01:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 21:13:51.715522
- Title: Fast Explainability via Feasible Concept Sets Generator
- Title(参考訳): 実現可能なコンセプトセットジェネレータによる高速説明可能性
- Authors: Deng Pan, Nuno Moniz, Nitesh Chawla,
- Abstract要約: モデルに依存しないアプローチの普遍性とモデル固有のアプローチの効率とのギャップを埋める。
まず、人間の理解可能な概念の集合を通して説明を定義する。
第二に、予測モデルに付随する説明として、最小限の可能な集合生成器を学習できることが示される。
- 参考スコア(独自算出の注目度): 7.011763596804071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A long-standing dilemma prevents the broader application of explanation methods: general applicability and inference speed. On the one hand, existing model-agnostic explanation methods usually make minimal pre-assumptions about the prediction models to be explained. Still, they require additional queries to the model through propagation or back-propagation to approximate the models' behaviors, resulting in slow inference and hindering their use in time-sensitive tasks. On the other hand, various model-dependent explanations have been proposed that achieve low-cost, fast inference but at the expense of limiting their applicability to specific model structures. In this study, we bridge the gap between the universality of model-agnostic approaches and the efficiency of model-specific approaches by proposing a novel framework without assumptions on the prediction model's structures, achieving high efficiency during inference and allowing for real-time explanations. To achieve this, we first define explanations through a set of human-comprehensible concepts and propose a framework to elucidate model predictions via minimal feasible concept sets. Second, we show that a minimal feasible set generator can be learned as a companion explainer to the prediction model, generating explanations for predictions. Finally, we validate this framework by implementing a novel model-agnostic method that provides robust explanations while facilitating real-time inference. Our claims are substantiated by comprehensive experiments, highlighting the effectiveness and efficiency of our approach.
- Abstract(参考訳): 長年のジレンマは、一般的な適用性と推論速度という、より広範な説明方法の適用を防止する。
一方、既存のモデルに依存しない説明法は、説明すべき予測モデルについて最小限の事前推定を行う。
それでも、モデルの振る舞いを近似するために、伝播やバックプロパゲーションを通じてモデルに追加のクエリが必要であるため、推論が遅くなり、時間に敏感なタスクでの使用が妨げられる。
一方で、低コストで高速な推論を実現するためのモデルに依存した様々な説明が提案されている。
本研究では,モデルに依存しないアプローチの普遍性とモデル固有のアプローチの効率とのギャップを,予測モデルの構造を仮定せずに新たなフレームワークを提案し,推論時に高い効率を達成し,リアルタイムな説明を可能にすることによって橋渡しする。
これを実現するために、まず、人間の理解可能な概念の集合を通して説明を定義し、最小限の概念集合を通してモデル予測を解明する枠組みを提案する。
第二に、最小限の可能な集合生成器が予測モデルに付随する説明として学習できることを示し、予測のための説明を生成する。
最後に、実時間推論を容易にしながら、堅牢な説明を提供する新しいモデルに依存しない手法を実装することにより、この枠組みを検証する。
我々の主張は包括的な実験によって裏付けられ、我々のアプローチの有効性と効率を強調している。
関連論文リスト
- On Generating Monolithic and Model Reconciling Explanations in Probabilistic Scenarios [46.752418052725126]
本稿では,確率論的モノリシックな説明とモデル整合的な説明を生成するための新しいフレームワークを提案する。
モノリシックな説明のために,本手法は確率論的論理を利用して不確実性を統合し,説明の確率を増大させる。
モデル整合性の説明のために,モデル整合性問題の論理に基づく変種を拡張し,確率的人間モデルを考慮したフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T16:07:31Z) - An Axiomatic Approach to Model-Agnostic Concept Explanations [67.84000759813435]
本稿では、線形性、再帰性、類似性という3つの自然な公理を満たす概念的説明へのアプローチを提案する。
次に、従来の概念的説明手法とのつながりを確立し、それらの意味の異なる意味についての洞察を提供する。
論文 参考訳(メタデータ) (2024-01-12T20:53:35Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
NLPシステムの予測に関する因果的説明は、安全性を確保し、信頼を確立するために不可欠である。
既存の手法は、しばしばモデル予測を効果的または効率的に説明できない。
本稿では, 対物近似(CF)の2つの手法を提案する。
論文 参考訳(メタデータ) (2023-10-01T07:31:04Z) - Counterfactuals of Counterfactuals: a back-translation-inspired approach
to analyse counterfactual editors [3.4253416336476246]
我々は、反事実的、対照的な説明の分析に焦点をあてる。
本稿では,新しい逆翻訳に基づく評価手法を提案する。
本研究では, 予測モデルと説明モデルの両方の振る舞いについて, 反事実を反復的に説明者に与えることで, 価値ある洞察を得ることができることを示す。
論文 参考訳(メタデータ) (2023-05-26T16:04:28Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
概念ベースの解釈可能性手法をNLPに拡張するための完全なフレームワークを提案する。
出力予測が大幅に変化する特徴を最適化する。
本手法は, ベースラインと比較して, 予測的影響, ユーザビリティ, 忠実度に関する優れた結果が得られる。
論文 参考訳(メタデータ) (2023-05-03T14:48:27Z) - Understanding Post-hoc Explainers: The Case of Anchors [6.681943980068051]
本稿では,テキストの判断を説明するために,少数の単語群をハイライトする規則に基づく解釈可能性法の理論解析を行う。
アルゴリズムを定式化し有用な洞察を提供した後、数学的にアンカーが有意義な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2023-03-15T17:56:34Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
本稿では、プロセス結果予測の分野における説明可能性モデルと説明可能性モデルの忠実性を通して、説明可能性を定義する。
本稿では,イベントログの仕様に基づいて適切なモデルを選択することのできる,X-MOPというガイドラインのセットを提案する。
論文 参考訳(メタデータ) (2022-03-30T05:59:50Z) - Training Deep Models to be Explained with Fewer Examples [40.58343220792933]
我々は、サンプル数を減らすために、スパース正規化器と同時に予測モデルと説明モデルを訓練する。
いくつかのデータセットを用いた実験により,提案手法は予測性能を維持しながら忠実性を向上させることを示した。
論文 参考訳(メタデータ) (2021-12-07T05:39:21Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
数発のセグメンテーションのための確率的潜在変数フレームワークである注意型プロトタイプ推論(API)を提案する。
我々は各オブジェクトカテゴリのプロトタイプを表現するためにグローバル潜在変数を定義し、確率分布としてモデル化する。
我々は4つのベンチマークで広範な実験を行い、提案手法は最先端のプロトタイプベースの手法よりも、少なくとも競争力があり、しばしば優れた性能が得られる。
論文 参考訳(メタデータ) (2021-05-14T06:58:44Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
分析による特徴に基づく説明の新たな評価基準を確立する。
我々は、緩やかに必要であり、予測に十分である新しい説明を得る。
我々は、現在の予測をターゲットクラスに移動させる一連の特徴を抽出するために、説明を拡張します。
論文 参考訳(メタデータ) (2020-05-31T05:52:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。