論文の概要: A Unifying Framework for Causal Explanation of Sequential Decision
Making
- arxiv url: http://arxiv.org/abs/2205.15462v1
- Date: Mon, 30 May 2022 23:17:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-02 05:42:23.494756
- Title: A Unifying Framework for Causal Explanation of Sequential Decision
Making
- Title(参考訳): 逐次意思決定の因果説明のための統一フレームワーク
- Authors: Samer B. Nashed and Saaduddin Mahmud and Claudia V. Goldman and Shlomo
Zilberstein
- Abstract要約: 本稿では、シーケンシャルな意思決定システムの因果的説明のための新しい枠組みを提案する。
本稿では,単一の統一的アプローチを用いて,エージェントアクションに対して意味的に異なるタイプの説明を識別する方法を示す。
- 参考スコア(独自算出の注目度): 24.29934526009098
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel framework for causal explanations of stochastic,
sequential decision-making systems. Building on the well-studied structural
causal model paradigm for causal reasoning, we show how to identify
semantically distinct types of explanations for agent actions using a single
unified approach. We provide results on the generality of this framework, run
time bounds, and offer several approximate techniques. Finally, we discuss
several qualitative scenarios that illustrate the framework's flexibility and
efficacy.
- Abstract(参考訳): 本稿では,確率的,逐次的な意思決定システムの因果的説明のための新しい枠組みを提案する。
因果推論のためのよく研究された構造因果モデルパラダイムに基づいて、単一の統一アプローチを用いて、エージェントアクションに対する意味的に異なる説明のタイプを特定する方法を示す。
このフレームワークの一般性、実行時のバウンダリ、およびいくつかの近似手法について結果を提供する。
最後に、フレームワークの柔軟性と有効性を示すいくつかの定性的なシナリオについて論じる。
関連論文リスト
- A process algebraic framework for multi-agent dynamic epistemic systems [55.2480439325792]
本稿では,マルチエージェント,知識ベース,動的システムのモデリングと解析のための統合フレームワークを提案する。
モデリング側では,このようなフレームワークを実用的な目的に使いやすくするプロセス代数的,エージェント指向の仕様言語を提案する。
論文 参考訳(メタデータ) (2024-07-24T08:35:50Z) - Fast Explainability via Feasible Concept Sets Generator [7.011763596804071]
モデルに依存しないアプローチの普遍性とモデル固有のアプローチの効率とのギャップを埋める。
まず、人間の理解可能な概念の集合を通して説明を定義する。
第二に、予測モデルに付随する説明として、最小限の可能な集合生成器を学習できることが示される。
論文 参考訳(メタデータ) (2024-05-29T00:01:40Z) - Distribution-consistency Structural Causal Models [6.276417011421679]
我々は,新しいテクスト分布-一貫性仮定を導入し,それに合わせて分布-一貫性構造因果モデル(DiscoSCM)を提案する。
モデルキャパシティの強化を具体化するために,DiscoSCM単独で実用的重要性を有する新たな因果パラメータ,一貫性のテキスト化(textitthe probability of consistency)を導入する。
論文 参考訳(メタデータ) (2024-01-29T06:46:15Z) - An Axiomatic Approach to Model-Agnostic Concept Explanations [67.84000759813435]
本稿では、線形性、再帰性、類似性という3つの自然な公理を満たす概念的説明へのアプローチを提案する。
次に、従来の概念的説明手法とのつながりを確立し、それらの意味の異なる意味についての洞察を提供する。
論文 参考訳(メタデータ) (2024-01-12T20:53:35Z) - A Semantic Approach to Decidability in Epistemic Planning (Extended
Version) [72.77805489645604]
我々は決定可能性を達成するために新しい意味論的アプローチを用いる。
具体的には、知識の論理S5$_n$と(知識)可換性と呼ばれる相互作用公理を拡大する。
我々は,本フレームワークが,独立した知識である共通知識の有限的非固定点的特徴を認めていることを証明した。
論文 参考訳(メタデータ) (2023-07-28T11:26:26Z) - A Model-Agnostic SAT-based Approach for Symbolic Explanation Enumeration [26.500149465292246]
特徴量と出力の関係を解析することにより,単一予測を局所的に説明するための説明を生成する。
提案手法では,予測モデルの命題エンコーディングとSATに基づくセッティングを用いて,2種類の記号的説明を生成する。
論文 参考訳(メタデータ) (2022-06-23T08:35:47Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
本稿では、プロセス結果予測の分野における説明可能性モデルと説明可能性モデルの忠実性を通して、説明可能性を定義する。
本稿では,イベントログの仕様に基づいて適切なモデルを選択することのできる,X-MOPというガイドラインのセットを提案する。
論文 参考訳(メタデータ) (2022-03-30T05:59:50Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
本稿では,古典的高階論理へのエンコーディングに基づく抽象的議論フレームワークの表現手法を提案する。
対話型および自動推論ツールを用いた抽象的議論フレームワークのコンピュータ支援評価のための一様フレームワークを提供する。
論文 参考訳(メタデータ) (2021-10-18T10:45:59Z) - Counterfactual Explanations in Sequential Decision Making Under
Uncertainty [27.763369810430653]
本研究では, 逐次的意思決定プロセスにおいて, 対実的説明を求める手法を開発した。
我々の問題定式化において、反実的説明は、少なくとも k 個の作用において異なる作用の別の列を特定する。
提案アルゴリズムは,不確実性の下での意思決定の促進に有用な洞察を与えることができることを示す。
論文 参考訳(メタデータ) (2021-07-06T17:38:19Z) - Towards Interpretable Reasoning over Paragraph Effects in Situation [126.65672196760345]
我々は,原因と効果を理解するためのモデルを必要とする状況において,段落効果を推論する作業に焦点をあてる。
本稿では,ニューラルネットワークモジュールを用いた推論プロセスの各ステップを明示的にモデル化する逐次的手法を提案する。
特に、5つの推論モジュールはエンドツーエンドで設計され、学習され、より解釈可能なモデルにつながる。
論文 参考訳(メタデータ) (2020-10-03T04:03:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。