論文の概要: Advancing Household Robotics: Deep Interactive Reinforcement Learning for Efficient Training and Enhanced Performance
- arxiv url: http://arxiv.org/abs/2405.18687v1
- Date: Wed, 29 May 2024 01:46:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 21:13:51.622190
- Title: Advancing Household Robotics: Deep Interactive Reinforcement Learning for Efficient Training and Enhanced Performance
- Title(参考訳): 家庭用ロボティクスの強化:効率的なトレーニングとパフォーマンス向上のための対話型強化学習
- Authors: Arpita Soni, Sujatha Alla, Suresh Dodda, Hemanth Volikatla,
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、ロボットが環境と対話することを可能にする重要なロボティクス技術として登場した。
本稿では,Deep Interactive Reinforcement Learningを通じて情報とアドバイスを保存・再利用する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The market for domestic robots made to perform household chores is growing as these robots relieve people of everyday responsibilities. Domestic robots are generally welcomed for their role in easing human labor, in contrast to industrial robots, which are frequently criticized for displacing human workers. But before these robots can carry out domestic chores, they need to become proficient in several minor activities, such as recognizing their surroundings, making decisions, and picking up on human behaviors. Reinforcement learning, or RL, has emerged as a key robotics technology that enables robots to interact with their environment and learn how to optimize their actions to maximize rewards. However, the goal of Deep Reinforcement Learning is to address more complicated, continuous action-state spaces in real-world settings by combining RL with Neural Networks. The efficacy of DeepRL can be further augmented through interactive feedback, in which a trainer offers real-time guidance to expedite the robot's learning process. Nevertheless, the current methods have drawbacks, namely the transient application of guidance that results in repeated learning under identical conditions. Therefore, we present a novel method to preserve and reuse information and advice via Deep Interactive Reinforcement Learning, which utilizes a persistent rule-based system. This method not only expedites the training process but also lessens the number of repetitions that instructors will have to carry out. This study has the potential to advance the development of household robots and improve their effectiveness and efficiency as learners.
- Abstract(参考訳): 家庭内ロボットが家事を行う市場は、こうしたロボットが日常の責任を和らげるにつれて成長している。
国内ロボットは一般的に、労働者を解雇したとしてしばしば批判される産業ロボットとは対照的に、人間の労働を緩和する役割で歓迎されている。
しかし、これらのロボットが家事を行う前には、周囲の認識、意思決定、人間の行動の把握など、いくつかの小さな活動に精通する必要がある。
強化学習(Reinforcement Learning, RL)は、ロボットが自分の環境と対話し、報酬を最大限にするために自分の行動を最適化する方法を学ぶための、重要なロボティクス技術として登場した。
しかし、Deep Reinforcement Learningの目標は、RLとニューラルネットワークを組み合わせることで、現実の環境でより複雑で継続的なアクションステートスペースに対処することだ。
DeepRLの有効性は、対話的なフィードバックを通じてさらに強化され、トレーナーがロボットの学習プロセスを高速化するためのリアルタイムガイダンスを提供する。
それにもかかわらず、現在の手法には欠点があり、すなわち、同じ条件下で繰り返し学習される指導の一時的な適用である。
そこで本研究では,永続的なルールベースシステムを利用したDeep Interactive Reinforcement Learningを通じて,情報とアドバイスを保存・再利用する新しい手法を提案する。
この方法は訓練プロセスを短縮するだけでなく、インストラクターが実行しなければならない反復回数を減らす。
本研究は,家庭用ロボットの開発を推進し,学習者としての有効性と効率を向上させる可能性を秘めている。
関連論文リスト
- SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
タスクをより小さな学習サブプロブレムに分解し、第2に模倣と強化学習を組み合わせてその強みを最大化するシステムであるspireを提案する。
我々は、模倣学習、強化学習、計画を統合する従来の手法よりも平均タスク性能が35%から50%向上していることを発見した。
論文 参考訳(メタデータ) (2024-10-23T17:42:07Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
強化学習(RL)アルゴリズムは、ロボットシステムの自律的なスキル獲得を可能にするという約束を持っている。
現実のロボットRLは、通常、環境をリセットするためにデータ収集と頻繁な人間の介入を必要とする。
本研究では,従来のタスクから収集した多様なオフラインデータセットを効果的に活用することで,これらの課題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2022-07-11T08:31:22Z) - Physics-Guided Hierarchical Reward Mechanism for Learning-Based Robotic
Grasping [10.424363966870775]
我々は,学習効率と学習に基づく自律的把握の一般化性を向上させるために,階層的リワード機構を備えた物理誘導型深層強化学習を開発した。
本手法は3本指MICOロボットアームを用いたロボット把握作業において有効である。
論文 参考訳(メタデータ) (2022-05-26T18:01:56Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
近年の研究では、現実的なロボット学習の応用において、対人訓練の効果が公平なトレードオフを起こさないことが示されている。
本研究は,ロボット学習におけるロバストネスと精度のトレードオフを再考し,最近のロバストトレーニング手法と理論の進歩により,現実のロボット応用に適した対人トレーニングが可能かどうかを解析する。
論文 参考訳(メタデータ) (2022-04-15T08:12:15Z) - Back to Reality for Imitation Learning [8.57914821832517]
模倣学習と一般のロボット学習は、ロボット工学のブレークスルーではなく、機械学習のブレークスルーによって生まれた。
私たちは、現実世界のロボット学習のより良い指標は時間効率であり、人間の真のコストをモデル化するものだと考えています。
論文 参考訳(メタデータ) (2021-11-25T02:03:52Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - Deep Reinforcement Learning with Interactive Feedback in a Human-Robot
Environment [1.2998475032187096]
対話型フィードバックを用いた深層強化学習手法を提案し,人間ロボットのシナリオで家庭内課題を学習する。
シミュレーションロボットアームを用いた3つの学習手法を比較し,異なる物体を整理する作業について検討した。
その結果、学習エージェントは、エージェントIDeepRLまたはヒューマンIDeepRLを使用して、与えられたタスクを早期に完了し、自律的なDeepRLアプローチと比較して誤りが少ないことがわかった。
論文 参考訳(メタデータ) (2020-07-07T11:55:27Z) - Efficient reinforcement learning control for continuum robots based on
Inexplicit Prior Knowledge [3.3645162441357437]
本稿では,未熟な事前知識に基づく効率的な強化学習手法を提案する。
本手法を用いることで、腱駆動ロボットのアクティブな視覚追跡と距離維持を実現することができる。
論文 参考訳(メタデータ) (2020-02-26T15:47:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。