論文の概要: Conformal Depression Prediction
- arxiv url: http://arxiv.org/abs/2405.18723v2
- Date: Sun, 30 Jun 2024 17:01:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 13:50:34.249652
- Title: Conformal Depression Prediction
- Title(参考訳): コンフォーマルデプレッション予測
- Authors: Yonghong Li, Shan Qu, Xiuzhuang Zhou,
- Abstract要約: コンフォメーション予測(CDP)は、コンフォメーション予測(CP)に基づく不確実性定量化を備えた抑うつ予測法である
CDPはプラグ・アンド・プレイのモジュールで、モデルの再トレーニングも、うつ病データ分布の仮定も必要としない。
CDP-ACCは、近似条件付き共形予測の改良である。
- 参考スコア(独自算出の注目度): 3.46701050230325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While existing depression prediction methods based on deep learning show promise, their practical application is hindered by the lack of trustworthiness, as these deep models are often deployed as \textit{black box} models, leaving us uncertain about the confidence of the model predictions. For high-risk clinical applications like depression prediction, uncertainty quantification is essential in decision-making. In this paper, we introduce conformal depression prediction (CDP), a depression prediction method with uncertainty quantification based on conformal prediction (CP), giving valid confidence intervals with theoretical coverage guarantees for the model predictions. CDP is a plug-and-play module that requires neither model retraining nor an assumption about the depression data distribution. As CDP provides only an average coverage guarantee across all inputs rather than per-input performance guarantee, we further propose CDP-ACC, an improved conformal prediction with approximate conditional coverage. CDP-ACC firstly estimates the prediction distribution through neighborhood relaxation, and then introduces a conformal score function by constructing nested sequences, so as to provide a tighter prediction interval for each specific input. We empirically demonstrate the application of CDP in uncertainty-aware depression prediction, as well as the effectiveness and superiority of CDP-ACC on the AVEC 2013 and AVEC 2014 datasets.
- Abstract(参考訳): 深層学習に基づく既存の抑うつ予測手法は将来性を示すが、それらの実践的応用は信頼性の欠如によって妨げられ、深層モデルはしばしば「textit{black box}」モデルとして展開されるため、モデル予測の信頼性について不透明なままである。
うつ病予測のようなリスクの高い臨床応用では、不確実性定量化は意思決定に不可欠である。
本稿では,共形予測(CP)に基づく不確定な量化を伴う抑うつ予測手法である共形抑うつ予測(CDP)を導入する。
CDPはプラグ・アンド・プレイのモジュールで、モデルの再トレーニングも、うつ病データ分布の仮定も必要としない。
CDPは、入力毎の性能保証よりも、全ての入力に対する平均カバレッジ保証しか提供しないため、近似条件付き共形予測であるCDP-ACCも提案する。
CDP-ACCは、まず、近傍緩和により予測分布を推定し、次に、ネストしたシーケンスを構成することで共形スコア関数を導入し、それぞれの入力に対してより厳密な予測間隔を提供する。
AVEC 2013 と AVEC 2014 データセットに対する CDP-ACC の有効性と優位性を実証的に示す。
関連論文リスト
- Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
コンフォーマル予測は、モデルに依存しない、分布のない不確実性定量化を提供する。
しかし、敵が訓練データと校正データを操作した場合の毒殺攻撃では、共形予測は信頼性が低い。
信頼性予測セット (RPS): 汚染下での信頼性保証を証明可能な共形予測セットを構築するための最初の効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-13T15:37:11Z) - Online scalable Gaussian processes with conformal prediction for guaranteed coverage [32.21093722162573]
結果として生じる不確実な値の整合性は、学習関数がGPモデルで指定された特性に従うという前提に基づいている。
提案するGPは,分散のない後処理フレームワークである共形予測(CP)を用いて,有意なカバレッジで予測セットを生成する。
論文 参考訳(メタデータ) (2024-10-07T19:22:15Z) - Robust Conformal Prediction Using Privileged Information [17.886554223172517]
本研究では,トレーニングデータの破損に対して堅牢な,保証されたカバレッジ率で予測セットを生成する手法を開発した。
我々のアプローチは、i.d仮定の下で有効となる予測セットを構築するための強力なフレームワークである共形予測に基づいている。
論文 参考訳(メタデータ) (2024-06-08T08:56:47Z) - Guaranteed Coverage Prediction Intervals with Gaussian Process Regression [0.6993026261767287]
本稿では,CP(Conformal Prediction)と呼ばれる機械学習フレームワークに基づくGPRの拡張を提案する。
この拡張により、モデルを完全に不特定であっても、必要なカバレッジでPIの生成が保証される。
論文 参考訳(メタデータ) (2023-10-24T08:59:40Z) - Conformal Prediction for Deep Classifier via Label Ranking [29.784336674173616]
コンフォーマル予測(Conformal prediction)は、予測セットを所望のカバレッジ保証で生成する統計フレームワークである。
我々は、$textitSorted Adaptive Prediction Sets$ (SAPS)という新しいアルゴリズムを提案する。
SAPSは最大ソフトマックス確率を除いて全ての確率値を捨てる。
論文 参考訳(メタデータ) (2023-10-10T08:54:14Z) - Conformal Prediction for Federated Uncertainty Quantification Under
Label Shift [57.54977668978613]
Federated Learning(FL)は、多くのクライアントが協力してモデルをトレーニングする機械学習フレームワークである。
我々は、量子回帰に基づく新しいコンフォメーション予測法を開発し、プライバシー制約を考慮した。
論文 参考訳(メタデータ) (2023-06-08T11:54:58Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
コンフォーマル予測は、機械学習において厳密な不確実性定量化を提供するための一般的なパラダイムとして現れつつある。
本稿では,共形予測を連邦学習環境に拡張する。
本稿では、FL設定に適した部分交換可能性の弱い概念を提案し、それをフェデレート・コンフォーマル予測フレームワークの開発に利用する。
論文 参考訳(メタデータ) (2023-05-27T19:57:27Z) - Post-selection Inference for Conformal Prediction: Trading off Coverage
for Precision [0.0]
伝統的に、共形予測推論はデータに依存しない発見レベルの仕様を必要とする。
我々は,データ依存的誤発見レベルを考慮した同時共形推論を開発する。
論文 参考訳(メタデータ) (2023-04-12T20:56:43Z) - Probabilistic Conformal Prediction Using Conditional Random Samples [73.26753677005331]
PCPは、不連続な予測セットによって対象変数を推定する予測推論アルゴリズムである。
効率的で、明示的または暗黙的な条件生成モデルと互換性がある。
論文 参考訳(メタデータ) (2022-06-14T03:58:03Z) - Private Prediction Sets [72.75711776601973]
機械学習システムは、個人のプライバシーの確実な定量化と保護を必要とする。
これら2つのデシラタを共同で扱う枠組みを提案する。
本手法を大規模コンピュータビジョンデータセット上で評価する。
論文 参考訳(メタデータ) (2021-02-11T18:59:11Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
本稿では、自動予測のための自動機械学習(Automatic Machine Learning for Conformal Prediction, AutoCP)というAutoMLフレームワークを提案する。
最高の予測モデルを選択しようとする慣れ親しんだAutoMLフレームワークとは異なり、AutoCPは、ユーザが指定したターゲットカバレッジ率を達成する予測間隔を構築する。
さまざまなデータセットでAutoCPをテストしたところ、ベンチマークアルゴリズムを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2020-06-24T23:13:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。