Global optimization in variational quantum algorithms via dynamic tunneling method
- URL: http://arxiv.org/abs/2405.18783v2
- Date: Fri, 2 Aug 2024 14:24:22 GMT
- Title: Global optimization in variational quantum algorithms via dynamic tunneling method
- Authors: Seung Park, Kyunghyun Baek, Seungjin Lee, Mahn-Soo Choi,
- Abstract summary: We adapt the conventional dynamic tunneling flow to exploit the distance measure of quantum states.
Our global optimization algorithm is applied to the variational quantum eigensolver for the transverse-field Ising model.
- Score: 2.156170153103442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a global optimization routine for the variational quantum algorithms, which utilizes the dynamic tunneling flow. Originally designed to leverage information gathered by a gradient-based optimizer around local minima, we adapt the conventional dynamic tunneling flow to exploit the distance measure of quantum states, resolving issues of extrinsic degeneracy arising from the parametrization of quantum states. Our global optimization algorithm is applied to the variational quantum eigensolver for the transverse-field Ising model to demonstrate the performance of our routine while comparing it with the conventional dynamic tunneling method, which is based on the Euclidean distance measure on the parameter space.
Related papers
- Optimizing a parameterized controlled gate with Free Quaternion Selection [0.4353365283165517]
In this study, we propose an algorithm to estimate the optimal parameters for locally minimizing the cost value of a single-qubit gate.
To benchmark the performance, we apply the proposed method to various optimization problems, including the Variational Eigensolver (VQE) for Ising and molecular Hamiltonians.
arXiv Detail & Related papers (2024-09-20T14:46:00Z) - Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
A Quantum Natural Gradient (QNG) algorithm for optimization of variational quantum circuits has been proposed recently.
In this study, we employ the Langevin equation with a QNG force to demonstrate that its discrete-time solution gives a generalized form, which we call Momentum-QNG.
arXiv Detail & Related papers (2024-09-03T15:21:16Z) - Pulse Engineering via Projection of Response Functions [0.0]
We present an iterative optimal control method of quantum systems, aimed at an implementation of a desired operation with optimal fidelity.
The update step of the method is based on the linear response of the fidelity to the control operators, and its projection onto the mode functions of the corresponding operator.
arXiv Detail & Related papers (2024-04-16T11:02:49Z) - Tensor train optimization of parametrized quantum circuits [0.0]
We consider parametrized quantum circuits composed of a low-depth hardware-efficient ansatz and Hamiltonian variational ansatz.
We discuss on the advantage of using tensor train based optimization, especially in the presence of noise.
arXiv Detail & Related papers (2023-06-03T06:50:00Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Information flow in parameterized quantum circuits [0.4893345190925177]
We introduce a new way to quantify information flow in quantum systems.
We propose a new distance metric using the mutual information between gate nodes.
We then present an optimization procedure for variational algorithms using paths based on the distance measure.
arXiv Detail & Related papers (2022-07-11T19:30:47Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - An efficient quantum algorithm for the time evolution of parameterized
circuits [0.0]
We introduce a novel hybrid algorithm to simulate the real-time evolution of quantum systems.
We show that our approach is particularly advantageous over existing global optimization algorithms.
arXiv Detail & Related papers (2021-01-12T16:21:08Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.