Counterfactual Metarules for Local and Global Recourse
- URL: http://arxiv.org/abs/2405.18875v1
- Date: Wed, 29 May 2024 08:35:17 GMT
- Title: Counterfactual Metarules for Local and Global Recourse
- Authors: Tom Bewley, Salim I. Amoukou, Saumitra Mishra, Daniele Magazzeni, Manuela Veloso,
- Abstract summary: T-CREx is a model-agnostic method for local and global counterfactual explanation.
It summarises recourse options for both individuals and groups in the form of human-readable rules.
- Score: 19.566362530518717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce T-CREx, a novel model-agnostic method for local and global counterfactual explanation (CE), which summarises recourse options for both individuals and groups in the form of human-readable rules. It leverages tree-based surrogate models to learn the counterfactual rules, alongside 'metarules' denoting their regions of optimality, providing both a global analysis of model behaviour and diverse recourse options for users. Experiments indicate that T-CREx achieves superior aggregate performance over existing rule-based baselines on a range of CE desiderata, while being orders of magnitude faster to run.
Related papers
- Generating Global and Local Explanations for Tree-Ensemble Learning Methods by Answer Set Programming [4.820391833117535]
We propose a method for generating rule sets as global and local explanations for tree-ensemble learning methods.
For global explanations, candidate rules are chosen from the entire trained tree-ensemble models.
For local explanations, candidate rules are selected by only considering rules that are relevant to the particular predicted instance.
arXiv Detail & Related papers (2024-10-14T18:32:29Z) - Adaptive Global-Local Representation Learning and Selection for
Cross-Domain Facial Expression Recognition [54.334773598942775]
Domain shift poses a significant challenge in Cross-Domain Facial Expression Recognition (CD-FER)
We propose an Adaptive Global-Local Representation Learning and Selection framework.
arXiv Detail & Related papers (2024-01-20T02:21:41Z) - FedLoGe: Joint Local and Generic Federated Learning under Long-tailed
Data [46.29190753993415]
Federated Long-Tailed Learning (Fed-LT) is a paradigm wherein data collected from decentralized local clients manifests a globally prevalent long-tailed distribution.
This paper introduces an approach termed Federated Local and Generic Model Training in Fed-LT (FedLoGe), which enhances both local and generic model performance.
arXiv Detail & Related papers (2024-01-17T05:04:33Z) - Group Preference Optimization: Few-Shot Alignment of Large Language Models [28.464834028110538]
Group Preference Optimization steers language models to preferences of individual groups in a few-shot manner.
We empirically validate the efficacy of GPO through rigorous evaluations using large language models with varied sizes.
Our results demonstrate that GPO not only aligns models more accurately but also requires fewer group-specific preferences, and less training and inference computing resources.
arXiv Detail & Related papers (2023-10-17T18:41:57Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - CGXplain: Rule-Based Deep Neural Network Explanations Using Dual Linear
Programs [4.632241550169363]
Rule-based surrogate models are an effective way to approximate a Deep Neural Network's (DNN) decision boundaries.
This paper introduces the CGX (Column Generation eXplainer) to address these limitations.
arXiv Detail & Related papers (2023-04-11T13:16:26Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
Video-based 3D human pose and shape estimations are evaluated by intra-frame accuracy and inter-frame smoothness.
We propose to structurally decouple the modeling of long-term and short-term correlations in an end-to-end framework, Global-to-Local Transformer (GLoT)
Our GLoT surpasses previous state-of-the-art methods with the lowest model parameters on popular benchmarks, i.e., 3DPW, MPI-INF-3DHP, and Human3.6M.
arXiv Detail & Related papers (2023-03-26T14:57:49Z) - Relational Proxies: Emergent Relationships as Fine-Grained
Discriminators [52.17542855760418]
We propose a novel approach that leverages information between the global and local part of an object for encoding its label.
We design Proxies based on our theoretical findings and evaluate it on seven challenging fine-grained benchmark datasets.
We also experimentally validate our theory and obtain consistent results across multiple benchmarks.
arXiv Detail & Related papers (2022-10-05T11:08:04Z) - Local-Adaptive Face Recognition via Graph-based Meta-Clustering and
Regularized Adaptation [21.08555249703121]
We introduce a new problem setup called Local-Adaptive Face Recognition (LaFR)
LaFR aims at getting optimal performance by training local-adapted models automatically and un-supervisely.
We show that LaFR can further improve the global model by a simple federated aggregation over the updated local models.
arXiv Detail & Related papers (2022-03-27T15:20:14Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
We study the problem of federated domain generalization (FedDG) for person re-identification (re-ID)
We propose a novel method, called "Domain and Feature Hallucinating (DFH)", to produce diverse features for learning generalized local and global models.
Our method achieves the state-of-the-art performance for FedDG on four large-scale re-ID benchmarks.
arXiv Detail & Related papers (2022-03-05T09:15:13Z) - Global Aggregation then Local Distribution for Scene Parsing [99.1095068574454]
We show that our approach can be modularized as an end-to-end trainable block and easily plugged into existing semantic segmentation networks.
Our approach allows us to build new state of the art on major semantic segmentation benchmarks including Cityscapes, ADE20K, Pascal Context, Camvid and COCO-stuff.
arXiv Detail & Related papers (2021-07-28T03:46:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.