論文の概要: Few-Shot Testing: Estimating Uncertainty of Memristive Deep Neural Networks Using One Bayesian Test Vector
- arxiv url: http://arxiv.org/abs/2405.18894v1
- Date: Wed, 29 May 2024 08:53:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 17:59:30.298749
- Title: Few-Shot Testing: Estimating Uncertainty of Memristive Deep Neural Networks Using One Bayesian Test Vector
- Title(参考訳): Few-Shot Testing: 1つのベイズ試験ベクトルを用いた膜深部ニューラルネットワークの不確かさの推定
- Authors: Soyed Tuhin Ahmed, Mehdi Tahoori,
- Abstract要約: 我々は,memristorベースのCIMハードウェア上に実装されたNNのモデル不確かさを推定できるテストベクトル生成フレームワークを提案する。
提案手法は, 異なるモデル次元, タスク, 故障率, 変動ノイズに基づいて評価し, メモリオーバーヘッドを0.024ドルに抑えながら, 100%のカバレッジを連続的に達成可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of deep learning algorithms such as neural networks (NNs) has increased tremendously recently, and they can achieve state-of-the-art performance in many domains. However, due to memory and computation resource constraints, implementing NNs on edge devices is a challenging task. Therefore, hardware accelerators such as computation-in-memory (CIM) with memristive devices have been developed to accelerate the most common operations, i.e., matrix-vector multiplication. However, due to inherent device properties, external environmental factors such as temperature, and an immature fabrication process, memristors suffer from various non-idealities, including defects and variations occurring during manufacturing and runtime. Consequently, there is a lack of complete confidence in the predictions made by the model. To improve confidence in NN predictions made by hardware accelerators in the presence of device non-idealities, in this paper, we propose a Bayesian test vector generation framework that can estimate the model uncertainty of NNs implemented on memristor-based CIM hardware. Compared to the conventional point estimate test vector generation method, our method is more generalizable across different model dimensions and requires storing only one test Bayesian vector in the hardware. Our method is evaluated on different model dimensions, tasks, fault rates, and variation noise to show that it can consistently achieve $100\%$ coverage with only $0.024$ MB of memory overhead.
- Abstract(参考訳): ニューラルネットワーク(NN)のようなディープラーニングアルゴリズムのパフォーマンスは、最近大幅に向上し、多くのドメインで最先端のパフォーマンスを達成することができる。
しかし、メモリと計算リソースの制約のため、エッジデバイスにNNを実装するのは難しい作業である。
したがって、メモリメモリ(CIM)などのハードウェアアクセラレータは、行列ベクトル乗算(行列ベクトル乗算)など、最も一般的な演算を高速化するために開発された。
しかし、固有のデバイス特性、温度などの外部環境要因、未熟な製造プロセスにより、メムリスタは製造や実行中に発生する欠陥や変動など、様々な非理想に悩まされる。
その結果、モデルによる予測に完全な信頼が欠如している。
本稿では,デバイス非イデアルの存在下でハードウェアアクセラレーターが行うNN予測の信頼性を向上させるために,memristor-based CIMハードウェア上で実装されたNNのモデル不確かさを推定できるベイズテストベクトル生成フレームワークを提案する。
従来の点推定試験ベクトル生成法と比較して,本手法は異なるモデル次元でより一般化可能であり,ハードウェアに1つのベイズベクトルだけを格納する必要がある。
提案手法は, 異なるモデル次元, タスク, 故障率, 変動ノイズに基づいて評価し, メモリオーバーヘッドを0.024$ MB に抑えながら, 常に100\% のカバレッジを達成可能であることを示す。
関連論文リスト
- Enhancing Reliability of Neural Networks at the Edge: Inverted
Normalization with Stochastic Affine Transformations [0.22499166814992438]
インメモリコンピューティングアーキテクチャに実装されたBayNNのロバスト性と推論精度を本質的に向上する手法を提案する。
実証的な結果は推論精度の優雅な低下を示し、最大で58.11%の値で改善された。
論文 参考訳(メタデータ) (2024-01-23T00:27:31Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
本稿では,Deformable-DETR,UP-DETR,DINOのキャリブレーション検出トランス(Cal-DETR)のメカニズムを提案する。
我々は、不確実性を利用してクラスロジットを変調する不確実性誘導ロジット変調機構を開発する。
その結果、Cal-DETRは、ドメイン内およびドメイン外の両方を校正する競合する列車時間法に対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-11-06T22:13:10Z) - Random-Set Neural Networks (RS-NN) [4.549947259731147]
分類のための新しいランダムセットニューラルネットワーク(RS-NN)を提案する。
RS-NNは、一組のクラス上の確率ベクトルよりも信念関数を予測する。
限られたトレーニングセットによって、機械学習で引き起こされる「緊急」不確実性を符号化する。
論文 参考訳(メタデータ) (2023-07-11T20:00:35Z) - One-Shot Online Testing of Deep Neural Networks Based on Distribution
Shift Detection [0.6091702876917281]
本研究では,1つのテストベクタのみを用いて,暗黙のクロスバー上で高速化されたNNをテストできるエミフォン・ショット・テスト手法を提案する。
私たちのアプローチは、いくつかの大きなトポロジにまたがる100%のフォールトカバレッジを一貫して達成できます。
論文 参考訳(メタデータ) (2023-05-16T11:06:09Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
本稿では,境界ボックスのクラス信頼度を予測精度に合わせることを目的とした,新たな補助損失定式化を提案する。
その結果,列車の走行時間損失はキャリブレーション基準を超過し,キャリブレーション誤差を低減させることがわかった。
論文 参考訳(メタデータ) (2023-03-25T08:56:21Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
ディープニューラルネットワーク(DNN)レイテンシのキャラクタリゼーションは、時間を要するプロセスである。
ハードウェアデバイスの事前知識とDNNアーキテクチャのレイテンシを具体化し,MAPLEを拡張したMAPLE-Xを提案する。
論文 参考訳(メタデータ) (2022-05-25T11:08:20Z) - MemSE: Fast MSE Prediction for Noisy Memristor-Based DNN Accelerators [5.553959304125023]
我々は,行列ベクトル乗算(MVM)を計算するためにmemristorを用いたDNNの平均二乗誤差を理論的に解析する。
DNNモデルのサイズを小さくする必要性から量子化ノイズと、中間値のプログラミングにおける可変性から生じるプログラミングノイズの両方を考慮に入れている。
提案手法はモンテカルロシミュレーションよりも約2桁高速であり, 与えられた電力制約に対して最小限の誤差を達成するために, 実装パラメータを最適化することができる。
論文 参考訳(メタデータ) (2022-05-03T18:10:43Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Uncertainty Modeling of Emerging Device-based Computing-in-Memory Neural
Accelerators with Application to Neural Architecture Search [25.841113960607334]
新興デバイスベースのコンピューティングインメモリ(CiM)は、高エネルギー効率ディープニューラルネットワーク(DNN)計算において有望な候補であることが証明されている。
ほとんどの新興デバイスは不確実な問題に悩まされており、結果として、保存される実際のデータと、それが設計される重み付け値との違いが生じる。
これにより、トレーニングされたモデルから実際にデプロイされたプラットフォームへの精度低下につながる。
論文 参考訳(メタデータ) (2021-07-06T23:29:36Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
本稿では,浮動小数点演算を除去するために,AQDと呼ばれる高精度な量子化オブジェクト検出ソリューションを提案する。
我々のAQDは、非常に低ビットのスキームの下での完全精度と比較して、同等またはそれ以上の性能を実現しています。
論文 参考訳(メタデータ) (2020-07-14T09:07:29Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。