Time-Series Foundation Models for Forecasting Soil Moisture Levels in Smart Agriculture
- URL: http://arxiv.org/abs/2405.18913v3
- Date: Fri, 9 Aug 2024 08:19:20 GMT
- Title: Time-Series Foundation Models for Forecasting Soil Moisture Levels in Smart Agriculture
- Authors: Boje Deforce, Bart Baesens, EstefanÃa Serral Asensio,
- Abstract summary: This work presents a novel application of $textttTimeGPT$, a state-of-the-art (SOTA) time-series foundation model, to predict soil water potential.
Our results demonstrate that $textttTimeGPT$ achieves competitive forecasting accuracy using only historical $psi_mathrmsoil$ data.
- Score: 1.0323063834827413
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The recent surge in foundation models for natural language processing and computer vision has fueled innovation across various domains. Inspired by this progress, we explore the potential of foundation models for time-series forecasting in smart agriculture, a field often plagued by limited data availability. Specifically, this work presents a novel application of $\texttt{TimeGPT}$, a state-of-the-art (SOTA) time-series foundation model, to predict soil water potential ($\psi_\mathrm{soil}$), a key indicator of field water status that is typically used for irrigation advice. Traditionally, this task relies on a wide array of input variables. We explore $\psi_\mathrm{soil}$'s ability to forecast $\psi_\mathrm{soil}$ in: ($i$) a zero-shot setting, ($ii$) a fine-tuned setting relying solely on historic $\psi_\mathrm{soil}$ measurements, and ($iii$) a fine-tuned setting where we also add exogenous variables to the model. We compare $\texttt{TimeGPT}$'s performance to established SOTA baseline models for forecasting $\psi_\mathrm{soil}$. Our results demonstrate that $\texttt{TimeGPT}$ achieves competitive forecasting accuracy using only historical $\psi_\mathrm{soil}$ data, highlighting its remarkable potential for agricultural applications. This research paves the way for foundation time-series models for sustainable development in agriculture by enabling forecasting tasks that were traditionally reliant on extensive data collection and domain expertise.
Related papers
- Evaluation of a Foundational Model and Stochastic Models for Forecasting Sporadic or Spiky Production Outages of High-Performance Machine Learning Services [0.0]
We optimize a state-of-the-art foundational model to forecast sporadic or spiky production outages of high-performance machine learning services.<n>The analysis helps us understand how each of the evaluated models performs for the sporadic or spiky events.<n>We use the models with optimal parameters to estimate a year-long outage statistics of a particular root cause with less than 6% value errors.
arXiv Detail & Related papers (2025-06-30T23:59:12Z) - Intention-Conditioned Flow Occupancy Models [69.79049994662591]
Large-scale pre-training has fundamentally changed how machine learning research is done today.<n>Applying this same framework to reinforcement learning is appealing because it offers compelling avenues for addressing core challenges in RL.<n>Recent advances in generative AI have provided new tools for modeling highly complex distributions.
arXiv Detail & Related papers (2025-06-10T15:27:46Z) - Localized Weather Prediction Using Kolmogorov-Arnold Network-Based Models and Deep RNNs [0.0]
This study benchmarks deep recurrent neural networks such as $textttLSTM, GRU, BiLSTM, BiGRU$, and Kolmogorov-Arnold-based models $(texttKAN and textttTKAN)$ for daily forecasting of temperature, precipitation, and pressure in two tropical cities.<n>We introduce two customized variants of $ textttTKAN$ that replace its original $textttSiLU$ activation function with $ textttGeLU$ and
arXiv Detail & Related papers (2025-05-27T18:01:57Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
Time series foundation models excel in zero-shot forecasting, handling diverse tasks without explicit training.
GIFT-Eval is a pioneering benchmark aimed at promoting evaluation across diverse datasets.
GIFT-Eval encompasses 23 datasets over 144,000 time series and 177 million data points.
arXiv Detail & Related papers (2024-10-14T11:29:38Z) - PLUTUS: A Well Pre-trained Large Unified Transformer can Unveil Financial Time Series Regularities [0.848210898747543]
Financial time series modeling is crucial for understanding and predicting market behaviors.
Traditional models struggle to capture complex patterns due to non-linearity, non-stationarity, and high noise levels.
Inspired by the success of large language models in NLP, we introduce $textbfPLUTUS$, a $textbfP$re-trained $textbfL$arge.
PLUTUS is the first open-source, large-scale, pre-trained financial time series model with over one billion parameters.
arXiv Detail & Related papers (2024-08-19T15:59:46Z) - Fairness Hub Technical Briefs: Definition and Detection of Distribution Shift [0.5825410941577593]
Distribution shift is a common situation in machine learning tasks, where the data used for training a model is different from the data the model is applied to in the real world.
This brief focuses on the definition and detection of distribution shifts in educational settings.
arXiv Detail & Related papers (2024-05-23T05:29:36Z) - Aardvark weather: end-to-end data-driven weather forecasting [30.219727555662267]
Aardvark Weather is an end-to-end data-driven weather prediction system.
It ingests raw observations and outputs global gridded forecasts and local station forecasts.
It can be optimised end-to-end to maximise performance over quantities of interest.
arXiv Detail & Related papers (2024-03-30T16:41:24Z) - Impact of Employing Weather Forecast Data as Input to the Estimation of Evapotranspiration by Deep Neural Network Models [0.11249583407496218]
Evapotranspiration (ET0) is a key parameter for designing smart irrigation scheduling, since it is related by a coefficient to the water needs of a crop.
To compute ET0 using the FAO56-PM method, four main weather parameters are needed: temperature, humidity, wind, and solar radiation.
arXiv Detail & Related papers (2024-03-27T12:01:51Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - Datamodels: Predicting Predictions from Training Data [86.66720175866415]
We present a conceptual framework, datamodeling, for analyzing the behavior of a model class in terms of the training data.
We show that even simple linear datamodels can successfully predict model outputs.
arXiv Detail & Related papers (2022-02-01T18:15:24Z) - Topological Attention for Time Series Forecasting [9.14716126400637]
We study whether $textitlocal topological properties$, as captured via persistent homology, can serve as a reliable signal.
We propose $textittopological attention$, which allows attending to local topological features within a time horizon of historical data.
arXiv Detail & Related papers (2021-07-19T17:24:05Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.