論文の概要: A GAN-based Tunable Image Compression System
- arxiv url: http://arxiv.org/abs/2001.06580v1
- Date: Sat, 18 Jan 2020 02:40:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-10 05:31:51.896085
- Title: A GAN-based Tunable Image Compression System
- Title(参考訳): GANに基づく可変画像圧縮システム
- Authors: Lirong Wu, Kejie Huang and Haibin Shen
- Abstract要約: 本稿では、GAN(Generative Adversarial Network)を用いてコンテンツベースの圧縮を再考し、重要でない領域を再構築する。
モデルを再トレーニングすることなく、特定の圧縮比に画像を圧縮するチューナブル圧縮スキームも提案する。
- 参考スコア(独自算出の注目度): 13.76136694287327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The method of importance map has been widely adopted in DNN-based lossy image
compression to achieve bit allocation according to the importance of image
contents. However, insufficient allocation of bits in non-important regions
often leads to severe distortion at low bpp (bits per pixel), which hampers the
development of efficient content-weighted image compression systems. This paper
rethinks content-based compression by using Generative Adversarial Network
(GAN) to reconstruct the non-important regions. Moreover, multiscale pyramid
decomposition is applied to both the encoder and the discriminator to achieve
global compression of high-resolution images. A tunable compression scheme is
also proposed in this paper to compress an image to any specific compression
ratio without retraining the model. The experimental results show that our
proposed method improves MS-SSIM by more than 10.3% compared to the recently
reported GAN-based method to achieve the same low bpp (0.05) on the Kodak
dataset.
- Abstract(参考訳): 画像内容の重要度に応じてビット割り当てを実現するため,DNNベースの画像圧縮において重要度マップが広く採用されている。
しかし、重要でない領域でのビットの割り当て不足は、低bpp(ピクセル当たりのビット)での厳しい歪みを招き、効率的なコンテンツ重み付け画像圧縮システムの開発を阻害する。
本稿では、GAN(Generative Adversarial Network)を用いてコンテンツベースの圧縮を再考し、重要でない領域を再構築する。
さらに、マルチスケールのピラミッド分解をエンコーダと判別器の両方に適用し、高解像度画像のグローバル圧縮を実現する。
本論文では,モデルを再トレーニングすることなく,任意の特定の圧縮比に画像を圧縮するために,可変圧縮スキームも提案する。
実験の結果,提案手法は,最近報告したGAN法と比較してMS-SSIMを10.3%以上改善し,Kodakデータセット上で同じ低bpp(0.05)を達成した。
関連論文リスト
- Implicit Neural Image Field for Biological Microscopy Image Compression [37.0218688308699]
Inlicit Neural Representation (INR) に基づく適応圧縮ワークフローを提案する。
このアプローチは、任意の形状の画像を圧縮し、任意のピクセル単位の圧縮が可能な、アプリケーション固有の圧縮目的を許容する。
我々は,我々のワークフローが高精細圧縮比を達成しただけでなく,下流解析に不可欠な詳細な情報も保存できることを,広範囲にわたる顕微鏡画像で実証した。
論文 参考訳(メタデータ) (2024-05-29T11:51:33Z) - UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Inlicit Neural Representation (INR) ネットワークは、その柔軟な圧縮比のため、顕著な汎用性を示している。
周波数領域情報を含むコードブックをINRネットワークへの事前入力として導入する。
これにより、INRの表現力が向上し、異なる画像ブロックに対して特異な条件付けが提供される。
論文 参考訳(メタデータ) (2024-05-27T05:52:13Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - Streaming Lossless Volumetric Compression of Medical Images Using Gated
Recurrent Convolutional Neural Network [0.0]
本稿では,ハードウェアフレンドリーなストリーミングロスレスボリューム圧縮フレームワークを提案する。
本稿では,多種多様な畳み込み構造と融合ゲート機構を組み合わせたゲートリカレント畳み込みニューラルネットワークを提案する。
提案手法は,堅牢な一般化能力と競争圧縮速度を示す。
論文 参考訳(メタデータ) (2023-11-27T07:19:09Z) - CompaCT: Fractal-Based Heuristic Pixel Segmentation for Lossless Compression of High-Color DICOM Medical Images [0.0]
医用画像は、医師による正確な分析のために、ピクセル単位の12ビットの高色深度を必要とする。
フィルタリングによる画像の標準圧縮はよく知られているが、具体化されていない実装のため、医療領域ではまだ最適ではない。
本研究では,動的に拡張されたデータ処理のための画素濃度の空間的特徴とパターンをターゲットとした医用画像圧縮アルゴリズムCompaCTを提案する。
論文 参考訳(メタデータ) (2023-08-24T21:43:04Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
本稿ではベクトル量子化(VQ)に基づく生成モデルを画像圧縮領域に導入する。
VQGANモデルによって学習されたコードブックは、強い表現能力をもたらす。
提案したフレームワークは、知覚的品質指向のメトリクスで最先端のコーデックより優れている。
論文 参考訳(メタデータ) (2023-07-17T06:14:19Z) - You Can Mask More For Extremely Low-Bitrate Image Compression [80.7692466922499]
近年,学習画像圧縮(lic)法は大きな進歩を遂げている。
licメソッドは、画像圧縮に不可欠な画像構造とテクスチャコンポーネントを明示的に探索することができない。
原画像の構造とテクスチャに基づいて可視パッチをサンプリングするDA-Maskを提案する。
極めて低ビットレート圧縮のために, lic と lic のエンドツーエンドを統一する最初のフレームワークである, 単純で効果的なマスク付き圧縮モデル (MCM) を提案する。
論文 参考訳(メタデータ) (2023-06-27T15:36:22Z) - Learned Lossless Compression for JPEG via Frequency-Domain Prediction [50.20577108662153]
JPEG画像のロスレス圧縮を学習するための新しいフレームワークを提案する。
周波数領域での学習を可能にするために、DCT係数は暗黙の局所冗長性を利用するためにグループに分割される。
グループ化されたDCT係数のエントロピーモデリングを実現するために、重み付きブロックに基づいてオートエンコーダのようなアーキテクチャを設計する。
論文 参考訳(メタデータ) (2023-03-05T13:15:28Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - Regularized Compression of MRI Data: Modular Optimization of Joint
Reconstruction and Coding [2.370481325034443]
本稿では,MRI再構成と損失圧縮の協調最適化のためのフレームワークを提案する。
本手法は,品質とビットレートのトレードオフを改善するために,医用画像の圧縮表現を生成する。
正規化法と比較すると,PSNRは高いビットレートで0.5から1dBのゲインが得られる。
論文 参考訳(メタデータ) (2020-10-08T15:32:52Z) - Learning Better Lossless Compression Using Lossy Compression [100.50156325096611]
我々は、ロスレス画像圧縮システムを構築するために、強力なロスレス画像圧縮アルゴリズムであるBPGを利用する。
我々は,BPG再構成を条件とした畳み込みニューラルネットワークに基づく確率モデルを用いて,残差分布をモデル化する。
そして、この画像は、BPGが生成したビットストリームと学習した残留コーダの連結を用いて保存される。
論文 参考訳(メタデータ) (2020-03-23T11:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。