論文の概要: SIG: Efficient Self-Interpretable Graph Neural Network for Continuous-time Dynamic Graphs
- arxiv url: http://arxiv.org/abs/2405.19062v1
- Date: Wed, 29 May 2024 13:09:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 17:10:39.205137
- Title: SIG: Efficient Self-Interpretable Graph Neural Network for Continuous-time Dynamic Graphs
- Title(参考訳): SIG: 連続時間動的グラフのための効率的な自己解釈型グラフニューラルネットワーク
- Authors: Lanting Fang, Yulian Yang, Kai Wang, Shanshan Feng, Kaiyu Feng, Jie Gui, Shuliang Wang, Yew-Soon Ong,
- Abstract要約: 我々は,これらの予測の因果的説明を同時に提供しながら,動的グラフ内の将来のリンクを予測することを目的としている。
これらの課題に対処するため、我々は新たな因果推論モデル、すなわち独立因果推定モデル(ICCM)を提案する。
提案手法は, リンク予測精度, 説明精度, 特徴量に対するロバスト性など, 既存の手法よりも優れていた。
- 参考スコア(独自算出の注目度): 34.269958289295516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While dynamic graph neural networks have shown promise in various applications, explaining their predictions on continuous-time dynamic graphs (CTDGs) is difficult. This paper investigates a new research task: self-interpretable GNNs for CTDGs. We aim to predict future links within the dynamic graph while simultaneously providing causal explanations for these predictions. There are two key challenges: (1) capturing the underlying structural and temporal information that remains consistent across both independent and identically distributed (IID) and out-of-distribution (OOD) data, and (2) efficiently generating high-quality link prediction results and explanations. To tackle these challenges, we propose a novel causal inference model, namely the Independent and Confounded Causal Model (ICCM). ICCM is then integrated into a deep learning architecture that considers both effectiveness and efficiency. Extensive experiments demonstrate that our proposed model significantly outperforms existing methods across link prediction accuracy, explanation quality, and robustness to shortcut features. Our code and datasets are anonymously released at https://github.com/2024SIG/SIG.
- Abstract(参考訳): 動的グラフニューラルネットワークは様々なアプリケーションにおいて有望であるが、連続時間動的グラフ(CTDG)の予測を説明するのは難しい。
本稿では,CTDGのための自己解釈型GNNについて検討する。
我々は,これらの予測の因果的説明を同時に提供しながら,動的グラフ内の将来のリンクを予測することを目的としている。
主な課題は,(1)独立および同一分散(IID)データとアウト・オブ・ディストリビューション(OOD)データの両方に一貫性のある基盤となる構造的情報と時間的情報を取得すること,(2)高品質なリンク予測結果と説明を効率的に生成することである。
これらの課題に対処するため、我々は新たな因果推論モデル(Independent and Con founded Causal Model (ICCM))を提案する。
ICCMはその後、効率性と効率性の両方を考慮したディープラーニングアーキテクチャに統合される。
拡張実験により,提案手法は,リンク予測精度,説明品質,特徴量に対する堅牢性など,既存の手法よりも優れていた。
私たちのコードとデータセットは、https://github.com/2024SIG/SIGで匿名でリリースされています。
関連論文リスト
- Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
グラフアンラーニングは、ユーザのプライバシ保護と、望ましくないデータによるネガティブな影響軽減に不可欠なツールとして登場した。
DGNNの普及に伴い、動的グラフアンラーニングの実装を検討することが不可欠となる。
DGNNアンラーニングを実装するために,効率的,効率的,モデルに依存しない,事後処理手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - Temporal Link Prediction Using Graph Embedding Dynamics [0.0]
動的ネットワークにおける時間的リンク予測は、複雑な科学的および現実世界の問題を解く可能性から特に関心がある。
時間的リンク予測への伝統的なアプローチは、ネットワークのダイナミックスの集約を統一的な出力として見つけることに集中してきた。
本稿では,ノードをニュートンオブジェクトとして定義し,ネットワークダイナミクスの予測に速度の概念を取り入れることで,時間的リンク予測の新しい視点を提案する。
論文 参考訳(メタデータ) (2024-01-15T07:35:29Z) - DyExplainer: Explainable Dynamic Graph Neural Networks [37.16783248212211]
我々は,動的グラフニューラルネットワーク(GNN)を高速に説明するための新しいアプローチであるDyExplainerを提案する。
DyExplainerは動的なGNNバックボーンをトレーニングし、各スナップショットでグラフの表現を抽出する。
また,事前指導型正規化を実現するために,コントラスト学習技術によるアプローチも強化する。
論文 参考訳(メタデータ) (2023-10-25T05:26:33Z) - DURENDAL: Graph deep learning framework for temporal heterogeneous
networks [0.5156484100374057]
時間的異種ネットワーク(THN)は、多くの現実世界の応用を特徴付ける進化的ネットワークである。
THNのためのグラフ深層学習フレームワークであるDURENDALを提案する。
論文 参考訳(メタデータ) (2023-09-30T10:46:01Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - Deep Dynamic Effective Connectivity Estimation from Multivariate Time
Series [0.0]
我々はニューラルネットワークトレーニング(DECENNT)による動的有効接続推定を開発する。
DECENNTは5つの異なるタスクに対して最先端(SOTA)メソッドを上回り、解釈可能なタスク固有の動的グラフを推論する。
論文 参考訳(メタデータ) (2022-02-04T21:14:21Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
数発のアウトオブグラフリンク予測という現実的な問題を導入する。
我々は,新しいメタ学習フレームワークによってこの問題に対処する。
我々は,知識グラフの補完と薬物と薬物の相互作用予測のために,複数のベンチマークデータセット上でモデルを検証した。
論文 参考訳(メタデータ) (2020-06-11T17:42:46Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。