論文の概要: Reconstructing Interpretable Features in Computational Super-Resolution microscopy via Regularized Latent Search
- arxiv url: http://arxiv.org/abs/2405.19112v1
- Date: Wed, 29 May 2024 14:20:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 16:51:10.492332
- Title: Reconstructing Interpretable Features in Computational Super-Resolution microscopy via Regularized Latent Search
- Title(参考訳): 正規化潜時探索による計算超解像顕微鏡の解釈的特徴の再構成
- Authors: Marzieh Gheisari, Auguste Genovesio,
- Abstract要約: 改良されたディープラーニングアプローチは、2つの画像解像度またはモダリティ間のマッピングを学習することで、顕微鏡画像の解像度を人工的に向上させることができる。
GAN潜時探索に基づく最近の手法では、ペア画像を必要としない解像度が大幅に向上した。
本稿では,正則化潜在探索(RLS)に基づく高分解能超解法を提案する。
- 参考スコア(独自算出の注目度): 2.7194314957925094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised deep learning approaches can artificially increase the resolution of microscopy images by learning a mapping between two image resolutions or modalities. However, such methods often require a large set of hard-to-get low-res/high-res image pairs and produce synthetic images with a moderate increase in resolution. Conversely, recent methods based on GAN latent search offered a drastic increase in resolution without the need of paired images. However, they offer limited reconstruction of the high-resolution image interpretable features. Here, we propose a robust super-resolution method based on regularized latent search~(RLS) that offers an actionable balance between fidelity to the ground-truth and realism of the recovered image given a distribution prior. The latter allows to split the analysis of a low-resolution image into a computational super-resolution task performed by deep learning followed by a quantification task performed by a handcrafted algorithm and based on interpretable biological features. This two-step process holds potential for various applications such as diagnostics on mobile devices, where the main aim is not to recover the high-resolution details of a specific sample but rather to obtain high-resolution images that preserve explainable and quantifiable differences between conditions.
- Abstract(参考訳): 改良されたディープラーニングアプローチは、2つの画像解像度またはモダリティ間のマッピングを学習することで、顕微鏡画像の解像度を人工的に向上させることができる。
しかし、このような手法では、高解像度/低解像度の画像対を多用し、解像度が適度に向上した合成画像を生成する必要があることが多い。
逆に、GAN潜在探索に基づく最近の手法では、ペア画像を必要としない解像度が大幅に向上した。
しかし、高解像度の画像解釈可能な特徴の限定的な再構成を提供する。
本稿では,正規化潜在探索(RLS)に基づく高分解能超解法を提案する。
後者は、低解像度画像の解析を、ディープラーニングによって実行される計算超解タスクに分割し、次いで手作りアルゴリズムによって実行される定量化タスクを解釈可能な生物学的特徴に基づいて行う。
この2段階のプロセスは、モバイルデバイス上の診断などの様々な応用の可能性を秘めており、その主な目的は、特定のサンプルの高解像度の詳細を復元するのではなく、説明可能かつ定量化された条件の違いを保存した高解像度の画像を得ることである。
関連論文リスト
- Histo-Diffusion: A Diffusion Super-Resolution Method for Digital Pathology with Comprehensive Quality Assessment [6.350679043444348]
ヒスト拡散(Histo-Diffusion)は、デジタル病理学における超解像の生成と評価のために特別に設計された拡散法である。
病理組織学の復元モジュールと、高品質な画像を生成するための制御可能な拡散モジュールを含む。
論文 参考訳(メタデータ) (2024-08-27T17:31:00Z) - URCDM: Ultra-Resolution Image Synthesis in Histopathology [4.393805955844748]
Ultra-Resolution Cascaded Diffusion Models (URCDMs) は、すべての病理像を高分解能で合成することができる。
本手法は脳,乳腺,腎臓の組織からなる3つの異なるデータセットを用いて評価した。
URCDMは、訓練された評価器が実際の画像と区別できない様々な解像度の出力を一貫して生成する。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - Hyperspectral and multispectral image fusion with arbitrary resolution through self-supervised representations [23.04458119996]
本稿では,2つのニューラル表現を行列因子化に組み込むことにより,新しい連続低ランク因子化(CLoRF)を提案する。
提案手法は,行列分解による低ランク化と神経表現による連続性の両方を自己教師的手法で利用することができる。
論文 参考訳(メタデータ) (2024-05-28T04:29:23Z) - Hybrid-Supervised Dual-Search: Leveraging Automatic Learning for
Loss-free Multi-Exposure Image Fusion [60.221404321514086]
マルチ露光画像融合(MEF)は、様々な露光レベルを表すデジタルイメージングの限界に対処するための重要な解決策である。
本稿では、ネットワーク構造と損失関数の両方を自動設計するための二段階最適化探索方式であるHSDS-MEFと呼ばれるMEFのためのハイブリッドスーパービジョンデュアルサーチ手法を提案する。
論文 参考訳(メタデータ) (2023-09-03T08:07:26Z) - Learning Resolution-Adaptive Representations for Cross-Resolution Person
Re-Identification [49.57112924976762]
低解像度(LR)クエリIDイメージと高解像度(HR)ギャラリーイメージとの整合性を実現する。
実際のカメラとの違いにより、クエリ画像が分解能の低下に悩まされることがしばしばあるため、これは困難かつ実用的な問題である。
本稿では,問合せ画像の解像度に適応する動的計量を用いて,HRとLRの画像を直接比較するためのSRフリーなパラダイムについて検討する。
論文 参考訳(メタデータ) (2022-07-09T03:49:51Z) - Image Matching with Scale Adjustment [57.18604132027697]
可変スケールでの関心点の表現と抽出方法を示す。
2つの異なる解像度で2つの画像を比較する方法を提案する。
論文 参考訳(メタデータ) (2020-12-10T11:03:25Z) - Multi Scale Identity-Preserving Image-to-Image Translation Network for
Low-Resolution Face Recognition [7.6702700993064115]
本稿では,画像から画像へ変換する深層ニューラルネットワークを提案する。
アイデンティティ関連の情報を保存しながら、非常に低解像度の顔を高解像度の顔に超解き放つことができる。
論文 参考訳(メタデータ) (2020-10-23T09:21:06Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z) - Feature Super-Resolution Based Facial Expression Recognition for
Multi-scale Low-Resolution Faces [7.634398926381845]
超解像法はしばしば低分解能画像の高精細化に使用されるが、FERタスクの性能は極低分解能画像では制限される。
本研究では,物体検出のための特徴的超解像法に触発されて,頑健な表情認識のための新たな生成逆ネットワークに基づく超解像法を提案する。
論文 参考訳(メタデータ) (2020-04-05T15:38:47Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
本稿では,基本特徴と回復特徴を別々に抽出する二分岐畳み込みニューラルネットワークを提案する。
特徴抽出ステップを2つのタスク非依存ストリームに分解することで、デュアルブランチモデルがトレーニングプロセスを容易にすることができる。
論文 参考訳(メタデータ) (2020-03-02T13:28:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。