論文の概要: Early Detection of Critical Urban Events using Mobile Phone Network Data
- arxiv url: http://arxiv.org/abs/2405.19125v1
- Date: Wed, 29 May 2024 14:31:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 16:51:10.479376
- Title: Early Detection of Critical Urban Events using Mobile Phone Network Data
- Title(参考訳): 携帯電話ネットワークデータを用いた重要都市イベントの早期検出
- Authors: Pierre Lemaire, Angelo Furno, Stefania Rubrichi, Alexis Bondu, Zbigniew Smoreda, Cezary Ziemlicki, Nour-Eddin El Faouzi, Eric Gaume,
- Abstract要約: ネットワークシグナリングデータ(NSD)は、個人による携帯電話サービスに関する継続的な時間情報を提供する可能性がある。
NSDは、火災、大事故、スタンプ、テロ攻撃、スポーツやレジャーの集まりなど、重要な都市イベントの早期発見を可能にする。
本稿では,高度NSDが交通サービス消費の異常を検出できるという実証的証拠を提示する。
- 参考スコア(独自算出の注目度): 1.215595725505415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Network Signalling Data (NSD) have the potential to provide continuous spatio-temporal information about the presence, mobility, and usage patterns of cell phone services by individuals. Such information is invaluable for monitoring large urban areas and supporting the implementation of decision-making services. When analyzed in real time, NSD can enable the early detection of critical urban events, including fires, large accidents, stampedes, terrorist attacks, and sports and leisure gatherings, especially if these events significantly impact mobile phone network activity in the affected areas. This paper presents empirical evidence that advanced NSD can detect anomalies in mobile traffic service consumption, attributable to critical urban events, with fine spatial and temporal resolutions. We introduce two methodologies for real-time anomaly detection from multivariate time series extracted from large-scale NSD, utilizing a range of algorithms adapted from the state-of-the-art in unsupervised machine learning techniques for anomaly detection. Our research includes a comprehensive quantitative evaluation of these algorithms on a large-scale dataset of NSD service consumption for the Paris region. The evaluation uses an original dataset of documented critical or unusual urban events. This dataset has been built as a ground truth basis for assessing the algorithms performance. The obtained results demonstrate that our framework can detect unusual events almost instantaneously and locate the affected areas with high precision, largely outperforming random classifiers. This efficiency and effectiveness underline the potential of NSD-based anomaly detection in significantly enhancing emergency response strategies and urban planning.
- Abstract(参考訳): ネットワークシグナリングデータ(NSD)は、個人による携帯電話サービスの存在、移動性、利用パターンに関する継続的な時空間情報を提供する可能性を秘めている。
このような情報は、大都市をモニタリングし、意思決定サービスの実現を支援するのに有用である。
NSDは、リアルタイムで分析することで、火災、大事故、スタンプ、テロ攻撃、スポーツやレジャーの集まりなどの重要な都市イベントを早期に検出することができる。
本稿では,高度NSDが交通サービス消費の異常を検出できることを示す実証的証拠について述べる。
大規模NSDから抽出した多変量時系列からリアルタイムな異常検出のための2つの手法を導入し, 異常検出のための教師なし機械学習技術において, 最先端のアルゴリズムを応用した。
本研究は,パリ地域でのSDサービス消費の大規模データセットを用いて,これらのアルゴリズムを定量的に評価することを含む。
この評価は、重要または異常な都市イベントを文書化した最初のデータセットを使用する。
このデータセットはアルゴリズムのパフォーマンスを評価するための根拠として構築されている。
その結果,我々のフレームワークは,異常事象をほぼ瞬時に検出し,影響領域を高精度に検出し,乱数分類器の精度を大きく上回ることを示した。
この効率性と有効性は、緊急対応戦略と都市計画を著しく強化するNSDベースの異常検出の可能性を示している。
関連論文リスト
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - AN An ica-ensemble learning approach for prediction of uwb nlos signals
data classification [0.0]
本研究は、無線通信による情報調和と、超広帯域レーダ信号を用いたNLOSシナリオにおける個人識別に焦点を当てた。
実験では、静的データに対して88.37%、動的データに対して87.20%の分類精度を示し、提案手法の有効性を強調した。
論文 参考訳(メタデータ) (2024-02-27T11:42:26Z) - SpatialRank: Urban Event Ranking with NDCG Optimization on
Spatiotemporal Data [55.609946936979036]
本研究ではSpatialRankという新しい空間イベントランキング手法を提案する。
本研究では,SpatialRankが犯罪や交通事故の最も危険性の高い場所を効果的に特定できることを示す。
論文 参考訳(メタデータ) (2023-09-30T06:20:21Z) - Sequential Attention Source Identification Based on Feature
Representation [88.05527934953311]
本稿では,テンポラルシーケンスに基づくグラフ注意源同定(TGASI)と呼ばれるシーケンス・ツー・シーケンス・ベースのローカライズ・フレームワークを提案する。
なお、このインダクティブラーニングのアイデアは、TGASIが他の事前の知識を知らずに新しいシナリオのソースを検出できることを保証する。
論文 参考訳(メタデータ) (2023-06-28T03:00:28Z) - CNTS: Cooperative Network for Time Series [7.356583983200323]
本稿では,協調ネットワーク時系列法(Cooperative Network Time Series approach)と呼ばれる,教師なし異常検出のための新しい手法を提案する。
CNTSの中心的な側面は多目的最適化の問題であり、協調的な解法戦略によって解決される。
実世界の3つのデータセットの実験は、CNTSの最先端性能を示し、検出器と再構成器の協調的有効性を確認する。
論文 参考訳(メタデータ) (2023-02-20T06:55:10Z) - Practitioner-Centric Approach for Early Incident Detection Using
Crowdsourced Data for Emergency Services [2.5328886773979375]
Wazeのようなクラウドソーシングプラットフォームは、インシデントを早期に特定する機会を提供する。
クラウドソースデータストリームからのインシデントを検出することは,このようなデータに関連するノイズや不確実性の難しさから難しい。
本稿では,クラウドソーシングデータを用いた実践者中心インシデント検出のための新しい問題定式化と解法を提案する。
論文 参考訳(メタデータ) (2021-12-03T16:51:41Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Fast Wireless Sensor Anomaly Detection based on Data Stream in Edge
Computing Enabled Smart Greenhouse [5.716360276016705]
エッジコンピューティングを有効にするスマート温室は、IoT技術の代表的なアプリケーションである。
従来の異常検出アルゴリズムは、無線センサによって生成されたデータストリームの特性を適切に考慮していない。
論文 参考訳(メタデータ) (2021-07-28T13:32:12Z) - Graph Convolutional Networks for traffic anomaly [4.172516437934823]
イベント検出は輸送において重要なタスクであり、そのタスクは大規模なイベントが都市交通ネットワークの大部分を破壊した時点のポイントを検出することである。
空間的および時間的交通パターンを完全に把握することは課題であるが、効果的な異常検出には重要な役割を果たす。
我々は, 交通条件を表す有向重み付きグラフ群において, 時間間隔毎に異常を検知する新しい手法で問題を定式化する。
論文 参考訳(メタデータ) (2020-12-25T22:36:22Z) - C-Watcher: A Framework for Early Detection of High-Risk Neighborhoods
Ahead of COVID-19 Outbreak [54.39837683016444]
C-Watcherは、新型コロナウイルスの感染拡大に先立ち、対象都市のすべての地区を検査し、感染リスクを予測することを目指している。
C-WatcherはBaidu Mapsから大規模な人体移動データを収集し、都市移動パターンに基づいた一連の特徴を用いて市内のすべての住宅地区を特徴付ける。
新型コロナウイルスの感染拡大の初期段階における実データ記録を用いたC-Watcherの広範な実験を行った。
論文 参考訳(メタデータ) (2020-12-22T17:02:54Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。