論文の概要: Promoting Two-sided Fairness in Dynamic Vehicle Routing Problem
- arxiv url: http://arxiv.org/abs/2405.19184v1
- Date: Wed, 29 May 2024 15:24:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 16:41:25.730131
- Title: Promoting Two-sided Fairness in Dynamic Vehicle Routing Problem
- Title(参考訳): 動車ルーティング問題における両面公正性の促進
- Authors: Yufan Kang, Rongsheng Zhang, Wei Shao, Flora D. Salim, Jeffrey Chan,
- Abstract要約: DVRPには、顧客に対してサービスを提供するサービスプロバイダと、異なる場所からの要求を集める顧客という2つの利害関係者が含まれている。
本稿では,遺伝的アルゴリズムを実用性にのみ焦点を絞った目的から,両面の公平性を含む多目的へと拡張する,両面の公平性を考慮した遺伝的アルゴリズム (2FairGA) を提案する。
- 参考スコア(独自算出の注目度): 21.148097893483406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic Vehicle Routing Problem (DVRP), is an extension of the classic Vehicle Routing Problem (VRP), which is a fundamental problem in logistics and transportation. Typically, DVRPs involve two stakeholders: service providers that deliver services to customers and customers who raise requests from different locations. Many real-world applications can be formulated as DVRP such as ridesharing and non-compliance capture. Apart from original objectives like optimising total utility or efficiency, DVRP should also consider fairness for all parties. Unfairness can induce service providers and customers to give up on the systems, leading to negative financial and social impacts. However, most existing DVRP-related applications focus on improving fairness from a single side, and there have been few works considering two-sided fairness and utility optimisation concurrently. To this end, we propose a novel framework, a Two-sided Fairness-aware Genetic Algorithm (named 2FairGA), which expands the genetic algorithm from the original objective solely focusing on utility to multi-objectives that incorporate two-sided fairness. Subsequently, the impact of injecting two fairness definitions into the utility-focused model and the correlation between any pair of the three objectives are explored. Extensive experiments demonstrate the superiority of our proposed framework compared to the state-of-the-art.
- Abstract(参考訳): ダイナミック・ビークル・ルーティング問題(Dynamic Vehicle Routing Problem、DVRP)は、ロジスティクスと輸送の根本的な問題である古典的なビークル・ルーティング問題(VRP)の拡張である。
通常、DVRPには2つの利害関係者が含まれる。
多くの現実世界のアプリケーションは、ライドシェアリングや非コンプライアンスキャプチャといったDVRPとして定式化することができる。
全体の有効性や効率の最適化といった当初の目的とは別に、DVRPはすべての当事者に対して公平性を考慮すべきである。
不公平は、サービス提供者や顧客にシステムを諦めさせ、経済的および社会的影響を負わせる可能性がある。
しかし、既存のDVRP関連のほとんどのアプリケーションは、一方の面から公正性を改善することに重点を置いており、一方の面の公平性とユーティリティの最適化を同時に検討する作業はほとんど行われていない。
そこで本研究では,遺伝的アルゴリズムを実用性にのみ焦点を絞った目的から,両面フェアネスを取り入れた多目的へと拡張する2面フェアネス対応遺伝的アルゴリズム (2FairGA) を提案する。
次に, 実用性に着目したモデルに2つのフェアネス定義を注入することの影響について検討した。
大規模な実験により,提案手法が最先端のフレームワークよりも優れていることを示す。
関連論文リスト
- A-FedPD: Aligning Dual-Drift is All Federated Primal-Dual Learning Needs [57.35402286842029]
本稿では,グローバルクライアントとローカルクライアントの仮想二重配向を構成する新しいアラインドデュアルデュアル(A-FedPD)手法を提案する。
本稿では,A-FedPD方式の非集中型セキュリティコンセンサスに対する効率を包括的に分析する。
論文 参考訳(メタデータ) (2024-09-27T17:00:32Z) - Multi-attribute Auction-based Resource Allocation for Twins Migration in Vehicular Metaverses: A GPT-based DRL Approach [85.65587846913793]
車両メタバース(Vehicular Metaverses)は、近代自動車産業を強化するために開発され、コネクテッドカー間の没入的で安全な体験を提供する。
本稿では,VTsマイグレーション時の資源配分を最適化する属性対応オークション方式を提案する。
我々は、生成事前学習型変換器(GPT)に基づく深部強化学習(DRL)アルゴリズムを用いて、DDAオークション器を訓練し、オークションクロックを効率的に調整する。
論文 参考訳(メタデータ) (2024-06-08T09:41:38Z) - Fair Allocation in Dynamic Mechanism Design [57.66441610380448]
競売業者が各ラウンドの買い手グループに、合計で$T$で分けない商品を販売している問題を考える。
競売人は、各グループの最低平均配分を保証する公正な制約に固執しつつ、割引された全体の収益を最大化することを目的としている。
論文 参考訳(メタデータ) (2024-05-31T19:26:05Z) - Individually Rational Collaborative Vehicle Routing through
Give-And-Take Exchanges [4.266376725904727]
本稿では, 協調車両ルーティング問題(CVRP)に焦点をあて, 個別の合理性のレンズによる新しいマルチエージェント手法を提案する。
Give-and-Takeアプローチにより,競合するロジスティクスエージェント間の協力を促進することにより,旅行距離の削減とシステム全体の運用効率の向上が可能であることを示す。
論文 参考訳(メタデータ) (2023-08-31T07:18:37Z) - Interpolating Item and User Fairness in Multi-Sided Recommendations [13.635310806431198]
我々は、新しいフェアレコメンデーションフレームワーク、問題(FAIR)を紹介します。
本稿では,リアルタイム学習とフェアレコメンデーションを同時に行う低レベルのアルゴリズム形式を提案する。
我々は,プラットフォーム収益を維持する上でのフレームワークと手法の有効性を実証するとともに,アイテムとユーザ双方に望ましい公平性を確保した。
論文 参考訳(メタデータ) (2023-06-12T15:00:58Z) - Using Simple Incentives to Improve Two-Sided Fairness in Ridesharing
Systems [27.34946988130242]
我々は、このILPの定式化の一環として、オンラインで実装できるシンプルなインセンティブに基づくフェアネススキームを提案する。
乗客グループとドライバーフェアネスの2つの異なるユースケースに対して、これらのフェアネスインセンティブをどのように定式化できるかを示す。
論文 参考訳(メタデータ) (2023-03-25T02:24:27Z) - Conditional Expectation based Value Decomposition for Scalable On-Demand
Ride Pooling [11.988825533369683]
従来のライドプーリングアプローチは、現在のマッチが車/ドライバーの将来的な価値に与える影響を考慮していない。
我々は,新たなアプローチである条件付き期待値分解(CEVD)がNeurADPを最大9.76%上回っていることを示す。
論文 参考訳(メタデータ) (2021-12-01T15:53:16Z) - Efficiency, Fairness, and Stability in Non-Commercial Peer-to-Peer
Ridesharing [84.47891614815325]
本稿は、P2Pライドシェアリングにおける中核的な問題である、ライダーとドライバーのマッチングに焦点を当てる。
P2Pライドシェアリングにおける公平性と安定性の新たな概念を紹介する。
結果は、妥当な計算時間で、公平で安定した解が得られることを示唆している。
論文 参考訳(メタデータ) (2021-10-04T02:14:49Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
DiDi、Uber、Lyftなどの大型配車プラットフォームは、都市内の数万台の車両を1日中数百万の乗車要求に接続している。
両課題に対処するための統合価値に基づく動的学習フレームワーク(V1D3)を提案する。
論文 参考訳(メタデータ) (2021-05-18T19:22:24Z) - Towards Fair Knowledge Transfer for Imbalanced Domain Adaptation [61.317911756566126]
本研究では,不均衡なドメイン間学習における公平性問題に対処するTowards Fair Knowledge Transferフレームワークを提案する。
具体的には、新規なクロスドメインミックスアップ生成を利用して、ターゲット情報でマイノリティソースセットを増強し、公正性を高める。
本モデルでは,2つのベンチマークで全体の精度を20%以上向上させる。
論文 参考訳(メタデータ) (2020-10-23T06:29:09Z) - A Distributed Model-Free Ride-Sharing Approach for Joint Matching,
Pricing, and Dispatching using Deep Reinforcement Learning [32.0512015286512]
我々は、動的で需要に敏感で、価格に基づく車両通行者マッチングとルート計画フレームワークを提案する。
我々の枠組みはニューヨーク市税のデータセットを用いて検証されている。
実験の結果,実時間および大規模設定におけるアプローチの有効性が示された。
論文 参考訳(メタデータ) (2020-10-05T03:13:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。