論文の概要: MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
- arxiv url: http://arxiv.org/abs/2405.19186v1
- Date: Wed, 29 May 2024 15:28:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 16:41:25.726680
- Title: MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
- Title(参考訳): MetaToken:メタ分類による画像記述における幻覚の検出
- Authors: Laura Fieback, Jakob Spiegelberg, Hanno Gottschalk,
- Abstract要約: トークンレベルの幻覚を無視可能なコストで検出する軽量バイナリ分類器であるMetaTokenを紹介する。
統計的解析から,これまでの研究で注目されていたLVLMの幻覚の要因を明らかにした。
提案手法の有効性を示す4種類のLVLMについて検討した。
- 参考スコア(独自算出の注目度): 1.3654846342364308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision Language Models (LVLMs) have shown remarkable capabilities in multimodal tasks like visual question answering or image captioning. However, inconsistencies between the visual information and the generated text, a phenomenon referred to as hallucinations, remain an unsolved problem with regard to the trustworthiness of LVLMs. To address this problem, recent works proposed to incorporate computationally costly Large (Vision) Language Models in order to detect hallucinations on a sentence- or subsentence-level. In this work, we introduce MetaToken, a lightweight binary classifier to detect hallucinations on the token-level at negligible cost. Based on a statistical analysis, we reveal key factors of hallucinations in LVLMs which have been overseen in previous works. MetaToken can be applied to any open-source LVLM without any knowledge about ground truth data providing a reliable detection of hallucinations. We evaluate our method on four state-of-the-art LVLMs demonstrating the effectiveness of our approach.
- Abstract(参考訳): 大きな視覚言語モデル(LVLM)は、視覚的質問応答や画像キャプションといったマルチモーダルタスクにおいて顕著な機能を示している。
しかし、視覚情報と生成したテキストの矛盾、すなわち幻覚と呼ばれる現象は、LVLMの信頼性に関して未解決の問題のままである。
この問題に対処するため、近年の研究では、文やサブ文レベルの幻覚を検出するために、計算コストのかかる大規模(視覚)言語モデルを組み込むことが提案されている。
本稿では,トークンレベルの幻覚を無視可能なコストで検出する,軽量なバイナリ分類器であるMetaTokenを紹介する。
統計的分析から,これまでの研究で注目されていたLVLMの幻覚の要因を明らかにした。
MetaTokenは、あらゆるオープンソースのLVLMに適用することができる。
提案手法の有効性を示す4種類のLVLMについて検討した。
関連論文リスト
- Investigating and Mitigating the Multimodal Hallucination Snowballing in Large Vision-Language Models [33.19894606649144]
視覚情報を人間の言語で理解する手法は進歩しているが、LVLM(Large Vision-Language Models)は多モード幻覚に悩まされている。
生成した幻覚に遭遇する際のLVLMの挙動を評価するためのMMHalballというフレームワークを提案する。
本稿では,LVLMの出力分布を残差視覚入力から導出した値で修正する,Residual Visual Decodingと呼ばれるトレーニング不要な手法を提案する。
論文 参考訳(メタデータ) (2024-06-30T03:04:11Z) - Does Object Grounding Really Reduce Hallucination of Large Vision-Language Models? [53.89380284760555]
大型視覚言語モデル(LVLM)は、画像に見つからない概念に言及するキャプションを生成する。
これらの幻覚は、LVLMの信頼性を損なうものであり、ユビキタス採用の主な障害であることは間違いない。
最近の研究は、画像領域やオブジェクトをテキストスパンに明示的にアライメントする、接地目的の追加は、LVLM幻覚の量を減らすことを示唆している。
論文 参考訳(メタデータ) (2024-06-20T16:56:11Z) - VDGD: Mitigating LVLM Hallucinations in Cognitive Prompts by Bridging the Visual Perception Gap [52.497823009176074]
我々は幻覚の詳細な分析を行い、LVLMが幻覚をいかに、いつ、どのように、どのように、どのように、そして、どのようにして、新しい洞察を導き出す。
この欠点を克服するために、幻覚を緩和するためのシンプルで頑健でトレーニングのないVisual Description Grounded Decoding (VDGD)を提案する。
論文 参考訳(メタデータ) (2024-05-24T16:21:59Z) - Hallucination Augmented Contrastive Learning for Multimodal Large
Language Model [53.65682783591723]
マルチモーダル大規模言語モデル(MLLM)は、自然言語と視覚情報を効率的に統合し、マルチモーダルタスクを処理できることが示されている。
しかし、MLLMは幻覚の基本的な限界に直面しており、誤った情報や偽情報を生成する傾向がある。
本稿では,MLLMにおける幻覚を表現学習の新たな視点から論じる。
論文 参考訳(メタデータ) (2023-12-12T04:05:15Z) - Analyzing and Mitigating Object Hallucination in Large Vision-Language Models [110.12460299261531]
大規模視覚言語モデル(LVLM)は、人間の言語で視覚情報を理解する際、顕著な能力を示した。
LVLMは依然として物体幻覚に悩まされており、画像に実際に存在しない物体を含む記述を生成するという問題である。
そこで我々は,LVLMの幻覚を再現するアルゴリズム LVLM Hallucination Revisor (LURE) を提案する。
論文 参考訳(メタデータ) (2023-10-01T18:10:53Z) - Evaluation and Analysis of Hallucination in Large Vision-Language Models [49.19829480199372]
LVLM(Large Vision-Language Models)は近年大きな成功を収めている。
LVLMは今でも幻覚に悩まされている。
幻覚とは、視覚入力に存在しないLVLMの応答の情報を指す。
論文 参考訳(メタデータ) (2023-08-29T08:51:24Z) - Evaluating Object Hallucination in Large Vision-Language Models [122.40337582958453]
本研究は,大規模視覚言語モデル(LVLM)の物体幻覚に関する最初の体系的研究である。
LVLMは、記述中の対象画像と矛盾しないオブジェクトを生成する傾向がある。
対象の幻覚を評価するために,POPEと呼ばれるポーリングに基づくクエリ手法を提案する。
論文 参考訳(メタデータ) (2023-05-17T16:34:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。