Causal Data Fusion with Quantum Confounders
- URL: http://arxiv.org/abs/2405.19278v1
- Date: Wed, 29 May 2024 17:10:30 GMT
- Title: Causal Data Fusion with Quantum Confounders
- Authors: Pedro Lauand, Bereket Ngussie Bekele, Elie Wolfe,
- Abstract summary: We show quantum experiments can generate observational and interventional data with a non-classical signature when pieced together that cannot be reproduced classically.
We show that non-classicality genuine to the fusion of multiple data tables is achievable with quantum resources.
Our work shows incorporating interventions can be a powerful tool to detect non-classicality beyond the violation of a standard Bell inequality.
- Score: 0.8437187555622164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: From the modern perspective of causal inference, Bell's theorem -- a fundamental signature of quantum theory -- is a particular case where quantum correlations are incompatible with the classical theory of causality, and the generalization of Bell's theorem to quantum networks has led to several breakthrough results and novel applications. Here, we consider the problem of causal data fusion, where we piece together multiple datasets collected under heterogeneous conditions. In particular, we show quantum experiments can generate observational and interventional data with a non-classical signature when pieced together that cannot be reproduced classically. We prove this quantum non-classicality emerges from the fusion of the datasets and is present in a plethora of scenarios, even where standard Bell non-classicality is impossible. Furthermore, we show that non-classicality genuine to the fusion of multiple data tables is achievable with quantum resources. Our work shows incorporating interventions -- a central tool in causal inference -- can be a powerful tool to detect non-classicality beyond the violation of a standard Bell inequality. In a companion article "Quantum Non-classicality from Causal Data Fusion", we extend our investigation considering all latent exogenous causal structures with 3 observable variables.
Related papers
- Nonlocal Locking of Observable Quantities: A Faithful Signature of Nonclassical Correlations [0.0]
We propose a general framework to investigate nonclassical correlations in multipartite quantum states.
We unveil an intriguing phenomenon referred to as nonlocal locking of observable quantities', where the value of an observable quantity gets locked in the correlation of a nonclassical state.
arXiv Detail & Related papers (2024-07-11T08:38:51Z) - Quantum Non-classicality from Causal Data Fusion [0.8437187555622164]
Bell's theorem shows that quantum correlations are incompatible with a classical theory of cause and effect.
We investigate the problem of causal data fusion that aims to piece together data tables collected under heterogeneous conditions.
We demonstrate the existence of quantum non-classicality resulting from data fusion, even in scenarios where achieving standard Bell non-classicality is impossible.
arXiv Detail & Related papers (2024-05-29T16:35:59Z) - Ergodic and chaotic properties in Tavis-Cummings dimer: quantum and classical limit [0.0]
We investigate two key aspects of quantum systems by using the Tavis-Cummings dimer system as a platform.
The first aspect involves unraveling the relationship between the phenomenon of self-trapping (or lack thereof) and integrability (or quantum chaos)
Secondly, we uncover the possibility of mixed behavior in this quantum system using diagnostics based on random matrix theory.
arXiv Detail & Related papers (2024-04-21T13:05:29Z) - Quantum non-classicality in the simplest causal network [0.41942958779358674]
Bell's theorem prompts us with a fundamental inquiry: what is the simplest scenario leading to the incompatibility between quantum correlations and the classical theory of causality?
Here we demonstrate that quantum non-classicality is possible in a network consisting of only three dichotomic variables, without the need of the locality assumption neither external measurement choices.
arXiv Detail & Related papers (2024-04-19T11:05:52Z) - Incompatibility of observables, channels and instruments in information
theories [68.8204255655161]
We study the notion of compatibility for tests of an operational probabilistic theory.
We show that a theory admits of incompatible tests if and only if some information cannot be extracted without disturbance.
arXiv Detail & Related papers (2022-04-17T08:44:29Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Experimental test of quantum causal influences [0.6291681227094761]
Quantum correlations can violate classical bounds on the causal influence even in scenarios where no violation of a Bell inequality is ever possible.
We experimentally observe this new witness of nonclassicality for the first time.
arXiv Detail & Related papers (2021-08-19T21:47:18Z) - Bell nonlocality in networks [62.997667081978825]
Bell's theorem proves that quantum theory is inconsistent with local physical models.
In the last decade, the investigation of nonlocality has moved beyond Bell's theorem to consider more sophisticated experiments.
This review discusses the main concepts, methods, results and future challenges in the emerging topic of Bell nonlocality in networks.
arXiv Detail & Related papers (2021-04-21T18:00:48Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.