Causal Fermion Systems as an Effective Collapse Theory
- URL: http://arxiv.org/abs/2405.19254v2
- Date: Thu, 5 Sep 2024 15:59:36 GMT
- Title: Causal Fermion Systems as an Effective Collapse Theory
- Authors: Felix Finster, Johannes Kleiner, Claudio F. Paganini,
- Abstract summary: In the non-relativistic limit, causal fermion systems give rise to an effective collapse theory.
The dynamics of the statistical operator is described by a deterministic equation of Kossakowski-Lindblad form.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is shown that, in the non-relativistic limit, causal fermion systems give rise to an effective collapse theory. The nonlinear and stochastic correction terms to the Schr\"odinger equation are derived from the causal action principle. The dynamics of the statistical operator is described by a deterministic equation of Kossakowski-Lindblad form. Moreover, the quantum state undergoes a dynamical collapse compatible with the Born rule. The effective model has similarities with the continuous spontaneous localization model, but differs from it by a conservation law for the probability integral as well as a non-locality in time on a microscopic length scale $\ell_{\min}$.
Related papers
- On the transition from quantum decoherence to thermal dynamics in natural conditions [0.0]
A single mechanism is proposed to explain wavefunction collapse, classical motion, dissipation, equilibration, and the transition from pure quantum mechanics to the natural regime.
Boltzmann's equal probability postulate is valid only when comparing results of nonrelativistic observers.
arXiv Detail & Related papers (2024-09-10T20:21:43Z) - Interacting chiral fermions on the lattice with matrix product operator norms [37.69303106863453]
We develop a Hamiltonian formalism for simulating interacting chiral fermions on the lattice.
The fermion doubling problem is circumvented by constructing a Fock space endowed with a semi-definite norm.
We demonstrate that the scaling limit of the free model recovers the chiral fermion field.
arXiv Detail & Related papers (2024-05-16T17:46:12Z) - Quantum simulation of the Fokker-Planck equation via Schrodingerization [33.76659022113328]
This paper studies a quantum simulation technique for solving the Fokker-Planck equation.
We employ the Schrodingerization method-it converts any linear partial and ordinary differential equation with non-Hermitian dynamics into systems of Schrodinger-type equations.
arXiv Detail & Related papers (2024-04-21T08:53:27Z) - A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Persistent non-Gaussian correlations in out-of-equilibrium Rydberg atom arrays [0.0]
We present a mechanism by which an initial state of a Rydberg atom array can retain persistent non-Gaussian correlations following a global quench.
These long-lived non-Gaussian states may have practical applications as quantum memories or stable resources for quantum-information protocols.
arXiv Detail & Related papers (2023-06-21T12:07:45Z) - Spontaneous localisation from a coarse-grained deterministic and
non-unitary dynamics [0.0]
Collapse of the wave function appears to violate the quantum superposition principle as well as deterministic evolution.
Objective collapse models propose a dynamical explanation for this phenomenon, by making a non-unitary and norm-preserving modification to the Schr"odinger equation.
arXiv Detail & Related papers (2023-05-11T10:32:23Z) - Dissipatons as generalized Brownian particles for open quantum systems: Dissipaton-embedded quantum master equation [16.87034694915828]
We revisit the dissipaton equation of motion theory and establish an equivalent dissipatons-embedded quantum master equation (DQME)
The DQME supplies a direct approach to investigate the statistical characteristics of dissipatons and thus the physically supporting hybrid bath modes.
Numerical demonstrations are carried out on the electron transfer model, exhibiting the transient statistical properties of the solvation coordinate.
arXiv Detail & Related papers (2023-03-19T14:14:46Z) - Relativistic effects on the Schr\"odinger-Newton equation [0.0]
We modify the Schr"odinger-Newton equation by considering certain relativistic corrections up to the first post-Newtonian order.
We observe that the natural dispersion of the wave function is slower than in the nonrelativistic case.
arXiv Detail & Related papers (2022-10-12T13:27:46Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Particle mixing and the emergence of classicality: A
spontaneous-collapse-model view [0.0]
We show that spontaneous collapse can induce the decay dynamics in both quantum state and master equations.
We show that the decay property of a flavor-oscillating system is intimately connected to the time (a)symmetry of the noise field underlying the collapse mechanism.
arXiv Detail & Related papers (2020-08-25T16:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.