論文の概要: DGD: Dynamic 3D Gaussians Distillation
- arxiv url: http://arxiv.org/abs/2405.19321v1
- Date: Wed, 29 May 2024 17:52:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 15:52:40.440410
- Title: DGD: Dynamic 3D Gaussians Distillation
- Title(参考訳): DGD:動的3Dガウス蒸留
- Authors: Isaac Labe, Noam Issachar, Itai Lang, Sagie Benaim,
- Abstract要約: 単一の単眼映像を入力として,動的3次元セマンティックラディアンス場を学習する作業に取り組む。
我々の学習したセマンティック・ラディアンス・フィールドは、動的3Dシーンの色と幾何学的性質だけでなく、ポイントごとのセマンティクスをキャプチャする。
動的3Dシーンの外観と意味を統一した3D表現であるDGDを提案する。
- 参考スコア(独自算出の注目度): 14.7298711927857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We tackle the task of learning dynamic 3D semantic radiance fields given a single monocular video as input. Our learned semantic radiance field captures per-point semantics as well as color and geometric properties for a dynamic 3D scene, enabling the generation of novel views and their corresponding semantics. This enables the segmentation and tracking of a diverse set of 3D semantic entities, specified using a simple and intuitive interface that includes a user click or a text prompt. To this end, we present DGD, a unified 3D representation for both the appearance and semantics of a dynamic 3D scene, building upon the recently proposed dynamic 3D Gaussians representation. Our representation is optimized over time with both color and semantic information. Key to our method is the joint optimization of the appearance and semantic attributes, which jointly affect the geometric properties of the scene. We evaluate our approach in its ability to enable dense semantic 3D object tracking and demonstrate high-quality results that are fast to render, for a diverse set of scenes. Our project webpage is available on https://isaaclabe.github.io/DGD-Website/
- Abstract(参考訳): 単一の単眼映像を入力として,動的3次元セマンティックラディアンス場を学習する作業に取り組む。
我々の学習したセマンティック・ラディアンス・フィールドは、動的3Dシーンの色と幾何学的性質だけでなく、ポイントごとのセマンティクスをキャプチャし、新しいビューとそれに対応するセマンティクスの生成を可能にする。
これにより、ユーザクリックやテキストプロンプトを含むシンプルで直感的なインターフェースを使用して定義された、多様な3Dセマンティックエンティティのセグメンテーションと追跡が可能になる。
そこで本研究では、動的3Dシーンの外観と意味を統一した3D表現であるDGDについて、最近提案された動的3Dガウス表現に基づいて述べる。
私たちの表現は、色情報と意味情報の両方で時間とともに最適化されます。
提案手法の鍵となるのは外観と意味属性の協調最適化であり,シーンの幾何学的特性に共同的に影響を及ぼす。
本研究では,高精細なセマンティックな3Dオブジェクトの追跡を可能にし,レンダリングが高速な高品質な結果を様々な場面で提示する能力について評価する。
私たちのプロジェクトのWebページはhttps://isaclabe.github.io/DGD-Website/で公開されています。
関連論文リスト
- MOSE: Monocular Semantic Reconstruction Using NeRF-Lifted Noisy Priors [11.118490283303407]
画像レベルの雑音を3次元に引き上げるニューラルネットワークセマンティック・リコンストラクション手法を提案する。
本手法は3次元空間と2次元空間の両方で正確な意味論と幾何学を生成する。
論文 参考訳(メタデータ) (2024-09-21T05:12:13Z) - Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting [27.974762304763694]
セマンティック・ガウシアン(Semantic Gaussians)は,3次元ガウシアン・スプレイティングをベースとした,新しいオープン語彙シーン理解手法である。
既存の手法とは異なり、様々な2次元意味的特徴を3次元ガウスの新たな意味的構成要素にマッピングする多目的投影手法を設計する。
我々は,高速な推論のために,生の3Dガウスから意味成分を直接予測する3Dセマンティックネットワークを構築した。
論文 参考訳(メタデータ) (2024-03-22T21:28:19Z) - HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting [53.6394928681237]
RGB画像に基づく都市景観の全体的理解は、難しいが重要な問題である。
我々の主な考え方は、静的な3Dガウスと動的なガウスの組合せを用いた幾何学、外観、意味論、運動の合同最適化である。
提案手法は,2次元および3次元のセマンティック情報を高精度に生成し,新たな視点をリアルタイムに描画する機能を提供する。
論文 参考訳(メタデータ) (2024-03-19T13:39:05Z) - SceneWiz3D: Towards Text-guided 3D Scene Composition [134.71933134180782]
既存のアプローチでは、大規模なテキスト・ツー・イメージモデルを使用して3D表現を最適化するか、オブジェクト中心のデータセット上で3Dジェネレータをトレーニングする。
テキストから高忠実度3Dシーンを合成する新しい手法であるSceneWiz3Dを紹介する。
論文 参考訳(メタデータ) (2023-12-13T18:59:30Z) - 3DStyle-Diffusion: Pursuing Fine-grained Text-driven 3D Stylization with
2D Diffusion Models [102.75875255071246]
テキスト駆動型スタイリングによる3Dコンテンツ作成は、マルチメディアとグラフィックコミュニティにとって根本的な課題となっている。
2次元拡散モデルから制御可能な外観と幾何学的ガイダンスを付加した3次元メッシュのきめ細かいスタイリングをトリガーする新しい3DStyle-Diffusionモデルを提案する。
論文 参考訳(メタデータ) (2023-11-09T15:51:27Z) - Generating Visual Spatial Description via Holistic 3D Scene
Understanding [88.99773815159345]
視覚空間記述(VSD)は、画像内の対象物の空間的関係を記述するテキストを生成することを目的としている。
外部の3Dシーン抽出器を用いて,入力画像の3Dオブジェクトとシーン特徴を抽出する。
対象物の中心となる3次元空間シーングラフ(Go3D-S2G)を構築し,対象物の空間意味を総合的な3次元シーン内にモデル化する。
論文 参考訳(メタデータ) (2023-05-19T15:53:56Z) - SSR-2D: Semantic 3D Scene Reconstruction from 2D Images [54.46126685716471]
本研究では,3Dアノテーションを使わずにセマンティックなシーン再構成を行う中心的な3Dシーンモデリングタスクについて検討する。
提案手法の鍵となる考え方は,不完全な3次元再構成と対応するRGB-D画像の両方を用いたトレーニング可能なモデルの設計である。
本研究では,2つの大規模ベンチマークデータセットであるMatterPort3DとScanNetに対して,セマンティックシーン補完の最先端性能を実現する。
論文 参考訳(メタデータ) (2023-02-07T17:47:52Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
そこで本研究では,2次元領域における自己教師型手法を,微細な3次元形状分割作業に活用することを提案する。
複数のビューから3次元形状を描画し、コントラスト学習フレームワーク内に密接な対応学習タスクを設置する。
その結果、学習された2次元表現はビュー不変であり、幾何学的に一貫性がある。
論文 参考訳(メタデータ) (2022-08-18T00:48:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。