論文の概要: Cardiac Evidence Backtracking for Eating Behavior Monitoring using Collocative Electrocardiogram Imagining
- arxiv url: http://arxiv.org/abs/2502.14430v1
- Date: Thu, 20 Feb 2025 10:27:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:26:47.742853
- Title: Cardiac Evidence Backtracking for Eating Behavior Monitoring using Collocative Electrocardiogram Imagining
- Title(参考訳): 心電図画像を用いた食行動モニタリングのための心臓エビデンス追跡
- Authors: Xu-Lu Zhang, Zhen-Qun Yang, Dong-Mei Jiang, Ga Liao, Qing Li, Ramesh Jain, Xiao-Yong Wei,
- Abstract要約: 本研究は,24時間ECGを用いて,アドホックかつ解釈可能な検出のための高度な深層学習を検知・調整するためのパイロット研究である。
提案手法の有効性は,従来のモデルよりも優れた食行動のECGデータセット上で検証されている。
- 参考スコア(独自算出の注目度): 12.019014491802952
- License:
- Abstract: Eating monitoring has remained an open challenge in medical research for years due to the lack of non-invasive sensors for continuous monitoring and the reliable methods for automatic behavior detection. In this paper, we present a pilot study using the wearable 24-hour ECG for sensing and tailoring the sophisticated deep learning for ad-hoc and interpretable detection. This is accomplished using a collocative learning framework in which 1) we construct collocative tensors as pseudo-images from 1D ECG signals to improve the feasibility of 2D image-based deep models; 2) we formulate the cardiac logic of analyzing the ECG data in a comparative way as periodic attention regulators so as to guide the deep inference to collect evidence in a human comprehensible manner; and 3) we improve the interpretability of the framework by enabling the backtracking of evidence with a set of methods designed for Class Activation Mapping (CAM) decoding and decision tree/forest generation. The effectiveness of the proposed framework has been validated on the largest ECG dataset of eating behavior with superior performance over conventional models, and its capacity of cardiac evidence mining has also been verified through the consistency of the evidence it backtracked and that of the previous medical studies.
- Abstract(参考訳): 連続的なモニタリングのための非侵襲的なセンサーの欠如と、自動行動検出のための信頼性の高い方法が原因で、食事モニタリングは医学研究において長年、オープンな課題であり続けている。
本稿では,24時間ECGを用いて,アドホックかつ解釈可能な検出のための高度な深層学習を検知・調整するパイロット研究を提案する。
これは、コロケーション学習フレームワークを使用して達成される。
1)1次元心電図信号から擬似画像としてコロケーションテンソルを構築し,2次元画像ベースディープモデルの実現可能性を向上させる。
2 心電図データ分析の心論理を定期的注意管理機関として比較して定式化し、深部推論を指導し、人間の理解に富んだ証拠収集を行う。
3) クラスアクティベーションマッピング(CAM)デコードと決定木/フォレスト生成のための一連の手法を用いて,証拠のバックトラックを可能にすることにより,フレームワークの解釈可能性を向上させる。
提案手法の有効性は, 従来のモデルよりも優れた食行動のECGデータセット上で検証され, 心的エビデンスマイニングの能力も, バックトラックされたエビデンスと過去の医学研究の整合性から検証されている。
関連論文リスト
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - ConvexECG: Lightweight and Explainable Neural Networks for Personalized, Continuous Cardiac Monitoring [43.23305904110984]
ConvexECGは、単誘導データから6誘導心電図を再構成するための説明可能かつ資源効率のよい方法である。
我々は、ConvexECGがより大きなニューラルネットワークに匹敵する精度を実現し、計算オーバーヘッドを大幅に削減することを示した。
論文 参考訳(メタデータ) (2024-09-19T06:14:30Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
短絡心電図記録から不整脈を検出するための病気特異的注意ベースディープラーニングモデル(DANet)を提案する。
新しいアイデアは、既存のディープニューラルネットワークにソフトコーディングまたはハードコーディングの波形拡張モジュールを導入することである。
DANetをソフトコーディングするためには、自己教師付き事前学習と2段階教師付きトレーニングを組み合わせた学習フレームワークも開発する。
論文 参考訳(メタデータ) (2024-07-25T13:27:10Z) - NERULA: A Dual-Pathway Self-Supervised Learning Framework for Electrocardiogram Signal Analysis [5.8961928852930034]
本稿では,シングルリードECG信号を対象とした自己教師型フレームワークNERULAを提案する。
NERULAのデュアルパスウェイアーキテクチャは、心電図再構成と非コントラスト学習を組み合わせて、詳細な心臓の特徴を抽出する。
学習スペクトルに生成経路と識別経路を組み合わせることで、様々なタスクにおいて最先端の自己教師付き学習ベンチマークより優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2024-05-21T14:01:57Z) - Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
リアルタイムガイドワイヤ分割と追跡のための2段階のディープラーニングフレームワークを提案する。
第1段階では、ヨロフ5検出器が元のX線画像と合成画像を使って訓練され、ターゲットのガイドワイヤのバウンディングボックスを出力する。
第2段階では、検出された各バウンディングボックスにガイドワイヤを分割するために、新規で効率的なネットワークが提案されている。
論文 参考訳(メタデータ) (2024-04-12T20:39:19Z) - CoReEcho: Continuous Representation Learning for 2D+time Echocardiography Analysis [42.810247034149214]
直接EF回帰に適した連続表現を強調する新しいトレーニングフレームワークであるCoReEchoを提案する。
CoReEcho: 1) 最大の心エコー画像データセット(EchoNet-Dynamic)上で現在最先端のSOTA(State-of-the-art)を、82.44の3.90&R2のMAEで上回り、2) 関連する下流タスクにおいてより効果的に転送する堅牢で一般化可能な機能を提供する。
論文 参考訳(メタデータ) (2024-03-15T10:18:06Z) - ElectroCardioGuard: Preventing Patient Misidentification in
Electrocardiogram Databases through Neural Networks [0.0]
臨床的には, 誤診患者に対する心電図記録の割り当ては不注意に発生することがある。
本稿では,2つの心電図が同一患者に由来するかどうかを判定する,小型で効率的な神経ネットワークモデルを提案する。
PTB-XL 上でのギャラリープローブによる患者識別において、760 倍のパラメータを用いて最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-06-09T18:53:25Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
本稿では,ECG信号の自動診断のためのGAN(Generative Adversarial Network)を用いた2階層型階層型ディープラーニングフレームワークを提案する。
第1レベルのモデルはメモリ拡張DeepオートエンコーダとGANで構成されており、異常信号と通常のECGを区別して異常検出を行う。
第2レベルの学習は、異なる不整脈識別のための堅牢な多クラス分類を目指している。
論文 参考訳(メタデータ) (2022-10-19T12:29:05Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
CT画像を用いた半監視型COVID-19病変分割のための不確実性誘導型二重一貫性学習ネットワーク(UDC-Net)を提案する。
提案した UDC-Net は,Dice の完全教師方式を 6.3% 向上させ,他の競合的半監督方式を有意なマージンで上回っている。
論文 参考訳(メタデータ) (2021-04-07T16:23:35Z) - End-to-End Deep Learning for Reliable Cardiac Activity Monitoring using
Seismocardiograms [0.057350354637930076]
SeismoNetは、心電図(SCG)信号から心臓活動を観察するエンドツーエンドのソリューションを提供することを目指している。
これらのSCG信号はモーションベースであり、簡単でユーザフレンドリーな方法で取得できる。
ディープラーニングを用いることで、ノイズライディング形態にもかかわらず、SCG信号から直接Rピークを検出することができる。
論文 参考訳(メタデータ) (2020-10-12T13:02:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。