Enhancing Trust and Security in the Vehicular Metaverse: A Reputation-Based Mechanism for Participants with Moral Hazard
- URL: http://arxiv.org/abs/2405.19355v1
- Date: Thu, 23 May 2024 16:17:07 GMT
- Title: Enhancing Trust and Security in the Vehicular Metaverse: A Reputation-Based Mechanism for Participants with Moral Hazard
- Authors: Ismail Lotfi, Marwa Qaraqe, Ali Ghrayeb, Niyato Dusit,
- Abstract summary: We tackle the issue of moral hazard within the realm of the vehicular Metaverse.
We propose an incentive mechanism centered around a reputation-based strategy.
- Score: 7.574183799932813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we tackle the issue of moral hazard within the realm of the vehicular Metaverse. A pivotal facilitator of the vehicular Metaverse is the effective orchestration of its market elements, primarily comprised of sensing internet of things (SIoT) devices. These SIoT devices play a critical role by furnishing the virtual service provider (VSP) with real-time sensing data, allowing for the faithful replication of the physical environment within the virtual realm. However, SIoT devices with intentional misbehavior can identify a loophole in the system post-payment and proceeds to deliver falsified content, which cause the whole vehicular Metaverse to collapse. To combat this significant problem, we propose an incentive mechanism centered around a reputation-based strategy. Specifically, the concept involves maintaining reputation scores for participants based on their interactions with the VSP. These scores are derived from feedback received by the VSP from Metaverse users regarding the content delivered by the VSP and are managed using a subjective logic model. Nevertheless, to prevent ``good" SIoT devices with false positive ratings to leave the Metaverse market, we build a vanishing-like system of previous ratings so that the VSP can make informed decisions based on the most recent and accurate data available. Finally, we validate our proposed model through extensive simulations. Our primary results show that our mechanism can efficiently prevent malicious devices from starting their poisoning attacks. At the same time, trustworthy SIoT devices that had a previous miss-classification are not banned from the market.
Related papers
- VMGuard: Reputation-Based Incentive Mechanism for Poisoning Attack Detection in Vehicular Metaverse [52.57251742991769]
vehicular Metaverse guard (VMGuard) protects vehicular Metaverse systems from data poisoning attacks.
VMGuard implements a reputation-based incentive mechanism to assess the trustworthiness of participating SIoT devices.
Our system ensures that reliable SIoT devices, previously missclassified, are not barred from participating in future rounds of the market.
arXiv Detail & Related papers (2024-12-05T17:08:20Z) - Is On-Device AI Broken and Exploitable? Assessing the Trust and Ethics in Small Language Models [1.5953412143328967]
We present a first study to investigate trust and ethical implications of on-device artificial intelligence (AI)
We focus on ''small'' language models (SLMs) amenable for personal devices like smartphones.
Our results show on-device SLMs to be significantly less trustworthy, specifically demonstrating more stereotypical, unfair and privacy-breaching behavior.
arXiv Detail & Related papers (2024-06-08T05:45:42Z) - An Explainable Ensemble-based Intrusion Detection System for Software-Defined Vehicle Ad-hoc Networks [0.0]
In this study, we explore the detection of cyber threats in vehicle networks through ensemble-based machine learning.
We propose a model that uses Random Forest and CatBoost as our main investigators, with Logistic Regression used to then reason on their outputs to make a final decision.
We observe that our approach improves classification accuracy, and results in fewer misclassifications compared to previous works.
arXiv Detail & Related papers (2023-12-08T10:39:18Z) - PEM: Perception Error Model for Virtual Testing of Autonomous Vehicles [20.300846259643137]
We define Perception Error Models (PEM) in this article.
PEM is a virtual simulation component that can enable the analysis of the impact of perception errors on AV safety.
We demonstrate the usefulness of PEM-based virtual tests, by evaluating camera, LiDAR, and camera-LiDAR setups.
arXiv Detail & Related papers (2023-02-23T10:54:36Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
We address the problem of designing incentive mechanisms by a virtual service provider (VSP) to hire sensing IoT devices to sell their sensing data.
Due to the limited bandwidth, we propose to use semantic extraction algorithms to reduce the delivered data by the sensing IoT devices.
We propose a novel iterative contract design and use a new variant of multi-agent reinforcement learning (MARL) to solve the modelled multi-dimensional contract problem.
arXiv Detail & Related papers (2023-02-22T15:52:37Z) - Blockchain-aided Secure Semantic Communication for AI-Generated Content
in Metaverse [59.04428659123127]
We propose a blockchain-aided semantic communication framework for AIGC services in virtual transportation networks.
We illustrate a training-based semantic attack scheme to generate adversarial semantic data by various loss functions.
We also design a semantic defense scheme that uses the blockchain and zero-knowledge proofs to tell the difference between the semantic similarities of adversarial and authentic semantic data.
arXiv Detail & Related papers (2023-01-25T02:32:02Z) - Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion
based Perception in Autonomous Driving Under Physical-World Attacks [62.923992740383966]
We present the first study of security issues of MSF-based perception in AD systems.
We generate a physically-realizable, adversarial 3D-printed object that misleads an AD system to fail in detecting it and thus crash into it.
Our results show that the attack achieves over 90% success rate across different object types and MSF.
arXiv Detail & Related papers (2021-06-17T05:11:07Z) - AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles [76.46575807165729]
We propose AdvSim, an adversarial framework to generate safety-critical scenarios for any LiDAR-based autonomy system.
By simulating directly from sensor data, we obtain adversarial scenarios that are safety-critical for the full autonomy stack.
arXiv Detail & Related papers (2021-01-16T23:23:12Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
It is of primary importance that the resulting decisions are robust to perturbations.
Adversarial perturbations are purposefully crafted alterations of the environment or of the sensory measurements.
A careful evaluation of the vulnerabilities of their sensing system(s) is necessary in order to build and deploy safer systems.
arXiv Detail & Related papers (2020-07-14T05:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.