Quantum Algorithms for tensor-SVD
- URL: http://arxiv.org/abs/2405.19485v1
- Date: Wed, 29 May 2024 20:01:11 GMT
- Title: Quantum Algorithms for tensor-SVD
- Authors: Jezer Jojo, Ankit Khandelwal, M Girish Chandra,
- Abstract summary: We introduce two new quantum t-SVD (tensor-SVD) algorithms.
First algorithm is largely based on previous work that proposed a quantum t-SVD algorithm for context-aware recommendation systems.
Second algorithm uses a hybrid variational approach largely based on a known variational quantum SVD algorithm.
- Score: 10.96131926459428
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A promising area of applications for quantum computing is in linear algebra problems. In this work, we introduce two new quantum t-SVD (tensor-SVD) algorithms. The first algorithm is largely based on previous work that proposed a quantum t-SVD algorithm for context-aware recommendation systems. The new algorithm however seeks to address and fix certain drawbacks to the original, and is fundamentally different in its approach compared to the existing work. The second algorithm proposed uses a hybrid variational approach largely based on a known variational quantum SVD algorithm.
Related papers
- A quantum algorithm for advection-diffusion equation by a probabilistic imaginary-time evolution operator [0.0]
We propose a quantum algorithm for solving the linear advection-diffusion equation by employing a new approximate probabilistic imaginary-time evolution (PITE) operator.
We construct the explicit quantum circuit for realizing the imaginary-time evolution of the Hamiltonian coming from the advection-diffusion equation.
Our algorithm gives comparable result to the Harrow-Hassidim-Lloyd (HHL) algorithm with similar gate complexity, while we need much less ancillary qubits.
arXiv Detail & Related papers (2024-09-27T08:56:21Z) - Hybrid Quantum-Classical Algorithms [0.0]
This thesis explores hybrid algorithms that combine classical and quantum computing to enhance the performance of classical algorithms.
Two approaches are studied: a hybrid search and sample optimization algorithm and a classical algorithm that assesses the cost and performance of quantum algorithms in chemistry.
arXiv Detail & Related papers (2024-06-18T07:54:05Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Improved Quantum Algorithms for Eigenvalues Finding and Gradient Descent [0.0]
Block encoding is a key ingredient in the recently developed quantum signal processing that forms a unifying framework for quantum algorithms.
In this article, we utilize block encoding to substantially enhance two previously proposed quantum algorithms.
We show how to extend our proposed method to different contexts, including matrix inversion and multiple eigenvalues estimation.
arXiv Detail & Related papers (2023-12-22T15:59:03Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Quantum Approximate Optimization Algorithm for Bayesian network
structure learning [1.332091725929965]
In this work, a specific type of variational quantum algorithm, the quantum approximate optimization algorithm, was used to solve the Bayesian network structure learning problem.
Results showed that the quantum approximate optimization algorithm approach offers competitive results with state-of-the-art methods and quantitative resilience to quantum noise.
arXiv Detail & Related papers (2022-03-04T16:11:34Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Quantum Algorithms for Prediction Based on Ridge Regression [0.7612218105739107]
We propose a quantum algorithm based on ridge regression model, which get the optimal fitting parameters.
The proposed algorithm has a wide range of application and the proposed algorithm can be used as a subroutine of other quantum algorithms.
arXiv Detail & Related papers (2021-04-27T11:03:52Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.