Hybrid Quantum-Classical Algorithms
- URL: http://arxiv.org/abs/2406.12371v1
- Date: Tue, 18 Jun 2024 07:54:05 GMT
- Title: Hybrid Quantum-Classical Algorithms
- Authors: Roberto Campos,
- Abstract summary: This thesis explores hybrid algorithms that combine classical and quantum computing to enhance the performance of classical algorithms.
Two approaches are studied: a hybrid search and sample optimization algorithm and a classical algorithm that assesses the cost and performance of quantum algorithms in chemistry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This thesis explores hybrid algorithms that combine classical and quantum computing to enhance the performance of classical algorithms. Two approaches are studied: a hybrid search and sample optimization algorithm and a classical algorithm that assesses the cost and performance of quantum algorithms in chemistry. Hybrid algorithms are vital due to limitations in both classical and quantum computing, offering a solution by leveraging the strengths of both. The first algorithm, quantum Metropolis Solver (QMS), adapts a quantum walk to a Metropolis-Hastings algorithm for industrial applications, demonstrating advantages over classical counterparts in various sectors. The second algorithm, TFermion, is a classical tool for evaluating the cost of T-type gates in quantum chemistry algorithms, aiding in the comparison and execution of these algorithms on real quantum hardware, and applied to the design of more efficient electric batteries.
Related papers
- Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems.
Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver.
Our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies.
arXiv Detail & Related papers (2024-10-30T08:41:29Z) - Hybrid quantum-classical approach for combinatorial problems at hadron colliders [7.2572969510173655]
We explore the potential of quantum algorithms to resolve the problems in particle physics experiments.
We consider top quark pair production in the fully hadronic channel at the Large Hadron Collider.
We show that the efficiency for selecting the correct pairing is greatly improved by utilizing quantum algorithms.
arXiv Detail & Related papers (2024-10-29T18:00:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
We study a new class of hybrid approaches to quantum optimization, termed Iterative Maximum Quantum Algorithms.
We show that for QAOA with depth $p=1$, this algorithm performs exactly the same operations and selections as the classical greedy algorithm for MIS.
arXiv Detail & Related papers (2023-09-22T18:00:03Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - A quantum advantage over classical for local max cut [48.02822142773719]
Quantum optimization approximation algorithm (QAOA) has a computational advantage over comparable local classical techniques on degree-3 graphs.
Results hint that even small-scale quantum computation, which is relevant to the current state-of the art quantum hardware, could have significant advantages over comparably simple classical.
arXiv Detail & Related papers (2023-04-17T16:42:05Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Quantum version of the k-NN classifier based on a quantum sorting
algorithm [0.0]
We develop a new quantum version of the classical machine learning algorithm known as k-nearest neighbors (k-NN)
Both the efficiency and performance of this new quantum version of the k-NN algorithm are compared to those of the classical k-NN and another quantum version proposed by Schuld et al.
arXiv Detail & Related papers (2022-04-07T22:31:01Z) - Stochastic optimization algorithms for quantum applications [0.0]
We review the use of first-order, second-order, and quantum natural gradient optimization methods, and propose new algorithms defined in the field of complex numbers.
The performance of all methods is evaluated by means of their application to variational quantum eigensolver, quantum control of quantum states, and quantum state estimation.
arXiv Detail & Related papers (2022-03-11T16:17:05Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.