論文の概要: Machine Learning Training Optimization using the Barycentric Correction
Procedure
- arxiv url: http://arxiv.org/abs/2403.00542v1
- Date: Fri, 1 Mar 2024 13:56:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 17:18:29.270726
- Title: Machine Learning Training Optimization using the Barycentric Correction
Procedure
- Title(参考訳): barycentric correction procedureを用いた機械学習トレーニング最適化
- Authors: Sofia Ramos-Pulido, Neil Hernandez-Gress and Hector G.
Ceballos-Cancino (Tecnologico de Monterrey, Mexico)
- Abstract要約: 本研究では,機械学習アルゴリズムとBCP(Barycentric correct procedure)と呼ばれる効率的な手法を組み合わせることを提案する。
この組み合わせによって、実データと合成データの時間に関する大きな利点が得られ、インスタンス数や次元が増加すると精度を損なうことなく得られることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) algorithms are predictively competitive algorithms with
many human-impact applications. However, the issue of long execution time
remains unsolved in the literature for high-dimensional spaces. This study
proposes combining ML algorithms with an efficient methodology known as the
barycentric correction procedure (BCP) to address this issue. This study uses
synthetic data and an educational dataset from a private university to show the
benefits of the proposed method. It was found that this combination provides
significant benefits related to time in synthetic and real data without losing
accuracy when the number of instances and dimensions increases. Additionally,
for high-dimensional spaces, it was proved that BCP and linear support vector
classification (LinearSVC), after an estimated feature map for the gaussian
radial basis function (RBF) kernel, were unfeasible in terms of computational
time and accuracy.
- Abstract(参考訳): 機械学習(ML)アルゴリズムは、予測的に競合するアルゴリズムである。
しかし、長い実行時間の問題は高次元空間に関する文献では未解決である。
本研究では,MLアルゴリズムとBCP(Barycentric correct procedure)と呼ばれる効率的な手法を組み合わせることでこの問題に対処する。
本研究は, 私立大学における合成データと学習データセットを用いて, 提案手法の利点を示す。
この組み合わせは、インスタンス数と寸法が増加すると精度を損なうことなく、合成データと実データにおける時間に関する大きな利点をもたらすことが判明した。
さらに, 高次元空間において, ガウス半径基底関数(RBF)カーネルに対する推定特徴写像の後に, BCPと線形支持ベクトル分類(LinearSVC)が計算時間と精度で実現不可能であることが証明された。
関連論文リスト
- Online Nonparametric Supervised Learning for Massive Data [0.0]
本研究では,非パラメトリック分類器を大規模にリアルタイムに計算する高速アルゴリズムと,ストリーミングデータフレームワークを開発した。
提案手法は、リアルタイムな胎児の健康モニタリングによく使用される機械学習アルゴリズムと比較して評価・比較する。
論文 参考訳(メタデータ) (2024-05-29T20:04:23Z) - Randomized Dimension Reduction with Statistical Guarantees [0.27195102129095]
この論文は、高速な実行と効率的なデータ利用のためのアルゴリズムをいくつか探求している。
一般化と分散性を向上する様々なデータ拡張を組み込んだ学習アルゴリズムに着目する。
具体的には、第4章では、データ拡張整合正則化のための複雑性分析のサンプルを提示する。
論文 参考訳(メタデータ) (2023-10-03T02:01:39Z) - Efficient distributed representations with linear-time attention scores normalization [3.8673630752805437]
本研究では,有界ノルムを持つ埋め込みベクトルに対するアテンションスコア正規化定数の線形時間近似を提案する。
推定公式の精度は、競合するカーネルメソッドを桁違いに上回る。
提案アルゴリズムは高度に解釈可能であり,任意の埋め込み問題に容易に適応できる。
論文 参考訳(メタデータ) (2023-03-30T15:48:26Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap は、ワーッサーシュタイン空間の低次元構造を明らかにするための計算可能なアルゴリズムである。
我々は,LOT Wassmapが正しい埋め込みを実現し,サンプルサイズの増加とともに品質が向上することを示す。
また、LOT Wassmapがペア距離計算に依存するアルゴリズムと比較して計算コストを大幅に削減することを示す。
論文 参考訳(メタデータ) (2023-02-14T22:12:16Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
ROC曲線 (AUC) の下の領域は、機械学習において最も広く使われている分類モデルのパフォーマンス指標の1つである。
近年の封筒平滑化技術に基づく効率的な近似勾配降下法を開発した。
提案アルゴリズムは,効率のよい解法を欠くランク付けされた範囲損失の和を最小化するためにも利用できる。
論文 参考訳(メタデータ) (2022-03-03T03:46:18Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Dual Optimization for Kolmogorov Model Learning Using Enhanced Gradient
Descent [8.714458129632158]
コルモゴロフモデル(コルモゴロフモデル、英: Kolmogorov model、KM)は、確率変数の集合の基本的な確率構造を学ぶための解釈可能で予測可能な表現手法である。
正規化双対最適化と拡張勾配降下法(GD)を併用した計算スケーラブルなKM学習アルゴリズムを提案する。
提案したKM学習アルゴリズムを用いた論理的関係マイニングの精度は80%以上である。
論文 参考訳(メタデータ) (2021-07-11T10:33:02Z) - Covariance-Free Sparse Bayesian Learning [62.24008859844098]
共分散行列の明示的な反転を回避する新しいSBL推論アルゴリズムを導入する。
私たちの手法は、既存のベースラインよりも数千倍も高速です。
我々は,SBLが高次元信号回復問題に難なく対処できる新しいアルゴリズムについて紹介する。
論文 参考訳(メタデータ) (2021-05-21T16:20:07Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
スパースマルコフ過程は、誘導変数の使用と効率的なカルマンフィルタライク再帰を結合する。
我々は,局所ガウス項を用いて非ガウス的確率を近似する一般的なサイトベースアプローチであるsitesを導出する。
提案手法は,変動推論,期待伝播,古典非線形カルマンスムーサなど,機械学習と信号処理の両方から得られるアルゴリズムの新たなスパース拡張の一群を導出する。
派生した方法は、モデルが時間と空間の両方で別々の誘導点を持つ文学時間データに適しています。
論文 参考訳(メタデータ) (2021-03-19T09:50:53Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。