Single-Loop Federated Actor-Critic across Heterogeneous Environments
- URL: http://arxiv.org/abs/2412.14555v1
- Date: Thu, 19 Dec 2024 06:13:59 GMT
- Title: Single-Loop Federated Actor-Critic across Heterogeneous Environments
- Authors: Ye Zhu, Xiaowen Gong,
- Abstract summary: We study textitSingle-loop Federated Actor Critic (SFAC) where agents perform actor-critic learning in a two-level federated manner.
We show that the convergence error of SFAC converges to a near-stationary point, with the extent proportional to environment.
- Score: 9.276123988094698
- License:
- Abstract: Federated reinforcement learning (FRL) has emerged as a promising paradigm, enabling multiple agents to collaborate and learn a shared policy adaptable across heterogeneous environments. Among the various reinforcement learning (RL) algorithms, the actor-critic (AC) algorithm stands out for its low variance and high sample efficiency. However, little to nothing is known theoretically about AC in a federated manner, especially each agent interacts with a potentially different environment. The lack of such results is attributed to various technical challenges: a two-level structure illustrating the coupling effect between the actor and the critic, heterogeneous environments, Markovian sampling and multiple local updates. In response, we study \textit{Single-loop Federated Actor Critic} (SFAC) where agents perform actor-critic learning in a two-level federated manner while interacting with heterogeneous environments. We then provide bounds on the convergence error of SFAC. The results show that the convergence error asymptotically converges to a near-stationary point, with the extent proportional to environment heterogeneity. Moreover, the sample complexity exhibits a linear speed-up through the federation of agents. We evaluate the performance of SFAC through numerical experiments using common RL benchmarks, which demonstrate its effectiveness.
Related papers
- On the Linear Speedup of Personalized Federated Reinforcement Learning with Shared Representations [15.549340968605234]
Federated reinforcement learning (FedRL) enables multiple agents to collaboratively learn a policy without sharing their local trajectories collected during agent-environment interactions.
We introduce a emphpersonalized FedRL framework (PFedRL) by taking advantage of possibly shared common structure among agents in heterogeneous environments.
arXiv Detail & Related papers (2024-11-22T15:42:43Z) - Momentum for the Win: Collaborative Federated Reinforcement Learning across Heterogeneous Environments [17.995517050546244]
We explore a Federated Reinforcement Learning (FRL) problem where $N$ agents collaboratively learn a common policy without sharing their trajectory data.
We propose two algorithms: FedSVRPG-M and FedHAPG-M, which converge to a stationary point of the average performance function.
Our algorithms enjoy linear convergence speedups with respect to the number of agents, highlighting the benefit of collaboration among agents in finding a common policy.
arXiv Detail & Related papers (2024-05-29T20:24:42Z) - Finite-Time Analysis of On-Policy Heterogeneous Federated Reinforcement Learning [8.632943870358627]
Federated reinforcement learning (FRL) has emerged as a promising paradigm for reducing the sample complexity of reinforcement learning tasks.
We introduce FedSARSA, a novel on-policy reinforcement learning scheme equipped with linear function approximation.
We show that FedSARSA converges to a policy that is near-optimal for all agents, with the extent of near-optimality proportional to the level of heterogeneity.
arXiv Detail & Related papers (2024-01-27T02:43:45Z) - Generalizable Heterogeneous Federated Cross-Correlation and Instance
Similarity Learning [60.058083574671834]
This paper presents a novel FCCL+, federated correlation and similarity learning with non-target distillation.
For heterogeneous issue, we leverage irrelevant unlabeled public data for communication.
For catastrophic forgetting in local updating stage, FCCL+ introduces Federated Non Target Distillation.
arXiv Detail & Related papers (2023-09-28T09:32:27Z) - Federated Temporal Difference Learning with Linear Function Approximation under Environmental Heterogeneity [44.2308932471393]
We show that exchanging model estimates leads to linear convergence speedups in the number of agents.
In a low-heterogeneity regime, exchanging model estimates leads to linear convergence speedups in the number of agents.
arXiv Detail & Related papers (2023-02-04T17:53:55Z) - Stateful active facilitator: Coordination and Environmental
Heterogeneity in Cooperative Multi-Agent Reinforcement Learning [71.53769213321202]
We formalize the notions of coordination level and heterogeneity level of an environment.
We present HECOGrid, a suite of multi-agent environments that facilitates empirical evaluation of different MARL approaches.
We propose a Training Decentralized Execution learning approach that enables agents to work efficiently in high-coordination and high-heterogeneity environments.
arXiv Detail & Related papers (2022-10-04T18:17:01Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.