Two-layer retrieval augmented generation framework for low-resource medical question-answering: proof of concept using Reddit data
- URL: http://arxiv.org/abs/2405.19519v1
- Date: Wed, 29 May 2024 20:56:52 GMT
- Title: Two-layer retrieval augmented generation framework for low-resource medical question-answering: proof of concept using Reddit data
- Authors: Sudeshna Das, Yao Ge, Yuting Guo, Swati Rajwal, JaMor Hairston, Jeanne Powell, Drew Walker, Snigdha Peddireddy, Sahithi Lakamana, Selen Bozkurt, Matthew Reyna, Reza Sameni, Yunyu Xiao, Sangmi Kim, Rasheeta Chandler, Natalie Hernandez, Danielle Mowery, Rachel Wightman, Jennifer Love, Anthony Spadaro, Jeanmarie Perrone, Abeed Sarker,
- Abstract summary: Retrieval augmented generation (RAG) provides the capability to constrain generative model outputs, and mitigate the possibility of hallucination.
We propose a two-layer RAG framework for query-focused answer generation and evaluate a proof-of-concept for this framework in the context of query-focused summary generation from social media forums.
- Score: 4.769236554995528
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Retrieval augmented generation (RAG) provides the capability to constrain generative model outputs, and mitigate the possibility of hallucination, by providing relevant in-context text. The number of tokens a generative large language model (LLM) can incorporate as context is finite, thus limiting the volume of knowledge from which to generate an answer. We propose a two-layer RAG framework for query-focused answer generation and evaluate a proof-of-concept for this framework in the context of query-focused summary generation from social media forums, focusing on emerging drug-related information. The evaluations demonstrate the effectiveness of the two-layer framework in resource constrained settings to enable researchers in obtaining near real-time data from users.
Related papers
- Analysis of Plan-based Retrieval for Grounded Text Generation [78.89478272104739]
hallucinations occur when a language model is given a generation task outside its parametric knowledge.
A common strategy to address this limitation is to infuse the language models with retrieval mechanisms.
We analyze how planning can be used to guide retrieval to further reduce the frequency of hallucinations.
arXiv Detail & Related papers (2024-08-20T02:19:35Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - Think-then-Act: A Dual-Angle Evaluated Retrieval-Augmented Generation [3.2134014920850364]
Large language models (LLMs) often face challenges such as temporal misalignment and generating hallucinatory content.
We propose a dual-angle evaluated retrieval-augmented generation framework textitThink-then-Act'
arXiv Detail & Related papers (2024-06-18T20:51:34Z) - Augmenting Textual Generation via Topology Aware Retrieval [30.933176170660683]
We develop a Topology-aware Retrieval-augmented Generation framework.
This framework includes a retrieval module that selects texts based on their topological relationships.
We have curated established text-attributed networks and conducted comprehensive experiments to validate the effectiveness of this framework.
arXiv Detail & Related papers (2024-05-27T19:02:18Z) - A Survey on Retrieval-Augmented Text Generation for Large Language Models [1.4579344926652844]
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements.
This paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation.
It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies.
arXiv Detail & Related papers (2024-04-17T01:27:42Z) - Loops On Retrieval Augmented Generation (LoRAG) [0.0]
Loops On Retrieval Augmented Generation (LoRAG) is a new framework designed to enhance the quality of retrieval-augmented text generation.
The architecture integrates a generative model, a retrieval mechanism, and a dynamic loop module.
LoRAG surpasses existing state-of-the-art models in terms of BLEU score, ROUGE score, and perplexity.
arXiv Detail & Related papers (2024-03-18T15:19:17Z) - OpenLEAF: Open-Domain Interleaved Image-Text Generation and Evaluation [151.57313182844936]
We propose a new interleaved generation framework based on prompting large-language models (LLMs) and pre-trained text-to-image (T2I) models, namely OpenLEAF.
For model assessment, we first propose to use large multi-modal models (LMMs) to evaluate the entity and style consistencies of open-domain interleaved image-text sequences.
arXiv Detail & Related papers (2023-10-11T17:58:33Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z) - GQE-PRF: Generative Query Expansion with Pseudo-Relevance Feedback [8.142861977776256]
We propose a novel approach which effectively integrates text generation models into PRF-based query expansion.
Our approach generates augmented query terms via neural text generation models conditioned on both the initial query and pseudo-relevance feedback.
We evaluate the performance of our approach on information retrieval tasks using two benchmark datasets.
arXiv Detail & Related papers (2021-08-13T01:09:02Z) - Adversarial Mutual Information for Text Generation [62.974883143784616]
We propose Adversarial Mutual Information (AMI): a text generation framework.
AMI is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target.
We show that AMI has potential to lead to a tighter lower bound of maximum mutual information.
arXiv Detail & Related papers (2020-06-30T19:11:51Z) - A Controllable Model of Grounded Response Generation [122.7121624884747]
Current end-to-end neural conversation models inherently lack the flexibility to impose semantic control in the response generation process.
We propose a framework that we call controllable grounded response generation (CGRG)
We show that using this framework, a transformer based model with a novel inductive attention mechanism, trained on a conversation-like Reddit dataset, outperforms strong generation baselines.
arXiv Detail & Related papers (2020-05-01T21:22:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.