Two-Layer Retrieval-Augmented Generation Framework for Low-Resource Medical Question Answering Using Reddit Data: Proof-of-Concept Study
- URL: http://arxiv.org/abs/2405.19519v2
- Date: Tue, 07 Jan 2025 16:13:50 GMT
- Title: Two-Layer Retrieval-Augmented Generation Framework for Low-Resource Medical Question Answering Using Reddit Data: Proof-of-Concept Study
- Authors: Sudeshna Das, Yao Ge, Yuting Guo, Swati Rajwal, JaMor Hairston, Jeanne Powell, Drew Walker, Snigdha Peddireddy, Sahithi Lakamana, Selen Bozkurt, Matthew Reyna, Reza Sameni, Yunyu Xiao, Sangmi Kim, Rasheeta Chandler, Natalie Hernandez, Danielle Mowery, Rachel Wightman, Jennifer Love, Anthony Spadaro, Jeanmarie Perrone, Abeed Sarker,
- Abstract summary: We propose a retrieval-augmented generation architecture for medical question answering on emerging issues associated with health-related topics.
Our framework generates individual summaries followed by an aggregated summary to answer medical queries from large amounts of user-generated social media data.
Our framework achieves comparable median scores in terms of relevance, length, hallucination, coverage, and coherence when evaluated using GPT-4 and Nous-Hermes-2-7B-DPO.
- Score: 4.769236554995528
- License:
- Abstract: The increasing use of social media to share lived and living experiences of substance use presents a unique opportunity to obtain information on side effects, use patterns, and opinions on novel psychoactive substances. However, due to the large volume of data, obtaining useful insights through natural language processing technologies such as large language models is challenging. This paper aims to develop a retrieval-augmented generation (RAG) architecture for medical question answering pertaining to clinicians' queries on emerging issues associated with health-related topics, using user-generated medical information on social media. We proposed a two-layer RAG framework for query-focused answer generation and evaluated a proof of concept for the framework in the context of query-focused summary generation from social media forums, focusing on emerging drug-related information. Our modular framework generates individual summaries followed by an aggregated summary to answer medical queries from large amounts of user-generated social media data in an efficient manner. We compared the performance of a quantized large language model (Nous-Hermes-2-7B-DPO), deployable in low-resource settings, with GPT-4. For this proof-of-concept study, we used user-generated data from Reddit to answer clinicians' questions on the use of xylazine and ketamine. Our framework achieves comparable median scores in terms of relevance, length, hallucination, coverage, and coherence when evaluated using GPT-4 and Nous-Hermes-2-7B-DPO, evaluated for 20 queries with 76 samples. There was no statistically significant difference between the two for coverage, coherence, relevance, length, and hallucination. A statistically significant difference was noted for the Coleman-Liau Index. Our RAG framework can effectively answer medical questions about targeted topics and can be deployed in resource-constrained settings.
Related papers
- LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.
We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.
Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - Give me Some Hard Questions: Synthetic Data Generation for Clinical QA [13.436187152293515]
This paper explores generating Clinical QA data using large language models (LLMs) in a zero-shot setting.
We find that naive prompting often results in easy questions that do not reflect the complexity of clinical scenarios.
Experiments on two Clinical QA datasets demonstrate that our method generates more challenging questions, significantly improving fine-tuning performance over baselines.
arXiv Detail & Related papers (2024-12-05T19:35:41Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - RULE: Reliable Multimodal RAG for Factuality in Medical Vision Language Models [35.60385437194243]
Current Medical Large Vision Language Models (Med-LVLMs) frequently encounter factual issues.
RAG, which utilizes external knowledge, can improve the factual accuracy of these models but introduces two major challenges.
We propose RULE, which consists of two components. First, we introduce a provably effective strategy for controlling factuality risk through the selection of retrieved contexts.
Second, based on samples where over-reliance on retrieved contexts led to errors, we curate a preference dataset to fine-tune the model.
arXiv Detail & Related papers (2024-07-06T16:45:07Z) - Generative AI for Synthetic Data Across Multiple Medical Modalities: A Systematic Review of Recent Developments and Challenges [2.1835659964186087]
This paper presents a systematic review of generative models used to synthesize various medical data types.
Our study encompasses a broad array of medical data modalities and explores various generative models.
arXiv Detail & Related papers (2024-06-27T14:00:11Z) - MedInsight: A Multi-Source Context Augmentation Framework for Generating
Patient-Centric Medical Responses using Large Language Models [3.0874677990361246]
Large Language Models (LLMs) have shown impressive capabilities in generating human-like responses.
We propose MedInsight:a novel retrieval framework that augments LLM inputs with relevant background information.
Experiments on the MTSamples dataset validate MedInsight's effectiveness in generating contextually appropriate medical responses.
arXiv Detail & Related papers (2024-03-13T15:20:30Z) - Generating Explanations in Medical Question-Answering by Expectation
Maximization Inference over Evidence [33.018873142559286]
We propose a novel approach for generating natural language explanations for answers predicted by medical QA systems.
Our system extract knowledge from medical textbooks to enhance the quality of explanations during the explanation generation process.
arXiv Detail & Related papers (2023-10-02T16:00:37Z) - Med-Flamingo: a Multimodal Medical Few-shot Learner [58.85676013818811]
We propose Med-Flamingo, a multimodal few-shot learner adapted to the medical domain.
Based on OpenFlamingo-9B, we continue pre-training on paired and interleaved medical image-text data from publications and textbooks.
We conduct the first human evaluation for generative medical VQA where physicians review the problems and blinded generations in an interactive app.
arXiv Detail & Related papers (2023-07-27T20:36:02Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
We build and release a large-scale high-quality Medical Dialogue dataset related to 12 types of common Gastrointestinal diseases named MedDG.
We propose two kinds of medical dialogue tasks based on MedDG dataset. One is the next entity prediction and the other is the doctor response generation.
Experimental results show that the pre-train language models and other baselines struggle on both tasks with poor performance in our dataset.
arXiv Detail & Related papers (2020-10-15T03:34:33Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
Contextual Discourse Vectors (CDV) is a distributed document representation for efficient answer retrieval from long documents.
Our model leverages a dual encoder architecture with hierarchical LSTM layers and multi-task training to encode the position of clinical entities and aspects alongside the document discourse.
We show that our generalized model significantly outperforms several state-of-the-art baselines for healthcare passage ranking.
arXiv Detail & Related papers (2020-02-03T15:47:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.