Two-Layer Retrieval-Augmented Generation Framework for Low-Resource Medical Question Answering Using Reddit Data: Proof-of-Concept Study
- URL: http://arxiv.org/abs/2405.19519v2
- Date: Tue, 07 Jan 2025 16:13:50 GMT
- Title: Two-Layer Retrieval-Augmented Generation Framework for Low-Resource Medical Question Answering Using Reddit Data: Proof-of-Concept Study
- Authors: Sudeshna Das, Yao Ge, Yuting Guo, Swati Rajwal, JaMor Hairston, Jeanne Powell, Drew Walker, Snigdha Peddireddy, Sahithi Lakamana, Selen Bozkurt, Matthew Reyna, Reza Sameni, Yunyu Xiao, Sangmi Kim, Rasheeta Chandler, Natalie Hernandez, Danielle Mowery, Rachel Wightman, Jennifer Love, Anthony Spadaro, Jeanmarie Perrone, Abeed Sarker,
- Abstract summary: We propose a retrieval-augmented generation architecture for medical question answering on emerging issues associated with health-related topics.<n>Our framework generates individual summaries followed by an aggregated summary to answer medical queries from large amounts of user-generated social media data.<n>Our framework achieves comparable median scores in terms of relevance, length, hallucination, coverage, and coherence when evaluated using GPT-4 and Nous-Hermes-2-7B-DPO.
- Score: 4.769236554995528
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing use of social media to share lived and living experiences of substance use presents a unique opportunity to obtain information on side effects, use patterns, and opinions on novel psychoactive substances. However, due to the large volume of data, obtaining useful insights through natural language processing technologies such as large language models is challenging. This paper aims to develop a retrieval-augmented generation (RAG) architecture for medical question answering pertaining to clinicians' queries on emerging issues associated with health-related topics, using user-generated medical information on social media. We proposed a two-layer RAG framework for query-focused answer generation and evaluated a proof of concept for the framework in the context of query-focused summary generation from social media forums, focusing on emerging drug-related information. Our modular framework generates individual summaries followed by an aggregated summary to answer medical queries from large amounts of user-generated social media data in an efficient manner. We compared the performance of a quantized large language model (Nous-Hermes-2-7B-DPO), deployable in low-resource settings, with GPT-4. For this proof-of-concept study, we used user-generated data from Reddit to answer clinicians' questions on the use of xylazine and ketamine. Our framework achieves comparable median scores in terms of relevance, length, hallucination, coverage, and coherence when evaluated using GPT-4 and Nous-Hermes-2-7B-DPO, evaluated for 20 queries with 76 samples. There was no statistically significant difference between the two for coverage, coherence, relevance, length, and hallucination. A statistically significant difference was noted for the Coleman-Liau Index. Our RAG framework can effectively answer medical questions about targeted topics and can be deployed in resource-constrained settings.
Related papers
- LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.
We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.
Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - Give me Some Hard Questions: Synthetic Data Generation for Clinical QA [13.436187152293515]
This paper explores generating Clinical QA data using large language models (LLMs) in a zero-shot setting.
We find that naive prompting often results in easy questions that do not reflect the complexity of clinical scenarios.
Experiments on two Clinical QA datasets demonstrate that our method generates more challenging questions, significantly improving fine-tuning performance over baselines.
arXiv Detail & Related papers (2024-12-05T19:35:41Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - Analysis of Plan-based Retrieval for Grounded Text Generation [78.89478272104739]
hallucinations occur when a language model is given a generation task outside its parametric knowledge.
A common strategy to address this limitation is to infuse the language models with retrieval mechanisms.
We analyze how planning can be used to guide retrieval to further reduce the frequency of hallucinations.
arXiv Detail & Related papers (2024-08-20T02:19:35Z) - RULE: Reliable Multimodal RAG for Factuality in Medical Vision Language Models [35.60385437194243]
Current Medical Large Vision Language Models (Med-LVLMs) frequently encounter factual issues.
RAG, which utilizes external knowledge, can improve the factual accuracy of these models but introduces two major challenges.
We propose RULE, which consists of two components. First, we introduce a provably effective strategy for controlling factuality risk through the selection of retrieved contexts.
Second, based on samples where over-reliance on retrieved contexts led to errors, we curate a preference dataset to fine-tune the model.
arXiv Detail & Related papers (2024-07-06T16:45:07Z) - Generative AI for Synthetic Data Across Multiple Medical Modalities: A Systematic Review of Recent Developments and Challenges [2.1835659964186087]
This paper presents a systematic review of generative models used to synthesize various medical data types.
Our study encompasses a broad array of medical data modalities and explores various generative models.
arXiv Detail & Related papers (2024-06-27T14:00:11Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - Think-then-Act: A Dual-Angle Evaluated Retrieval-Augmented Generation [3.2134014920850364]
Large language models (LLMs) often face challenges such as temporal misalignment and generating hallucinatory content.
We propose a dual-angle evaluated retrieval-augmented generation framework textitThink-then-Act'
arXiv Detail & Related papers (2024-06-18T20:51:34Z) - Augmenting Textual Generation via Topology Aware Retrieval [30.933176170660683]
We develop a Topology-aware Retrieval-augmented Generation framework.
This framework includes a retrieval module that selects texts based on their topological relationships.
We have curated established text-attributed networks and conducted comprehensive experiments to validate the effectiveness of this framework.
arXiv Detail & Related papers (2024-05-27T19:02:18Z) - A Survey on Retrieval-Augmented Text Generation for Large Language Models [1.4579344926652844]
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements.
This paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation.
It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies.
arXiv Detail & Related papers (2024-04-17T01:27:42Z) - Loops On Retrieval Augmented Generation (LoRAG) [0.0]
Loops On Retrieval Augmented Generation (LoRAG) is a new framework designed to enhance the quality of retrieval-augmented text generation.
The architecture integrates a generative model, a retrieval mechanism, and a dynamic loop module.
LoRAG surpasses existing state-of-the-art models in terms of BLEU score, ROUGE score, and perplexity.
arXiv Detail & Related papers (2024-03-18T15:19:17Z) - MedInsight: A Multi-Source Context Augmentation Framework for Generating
Patient-Centric Medical Responses using Large Language Models [3.0874677990361246]
Large Language Models (LLMs) have shown impressive capabilities in generating human-like responses.
We propose MedInsight:a novel retrieval framework that augments LLM inputs with relevant background information.
Experiments on the MTSamples dataset validate MedInsight's effectiveness in generating contextually appropriate medical responses.
arXiv Detail & Related papers (2024-03-13T15:20:30Z) - OpenLEAF: Open-Domain Interleaved Image-Text Generation and Evaluation [151.57313182844936]
We propose a new interleaved generation framework based on prompting large-language models (LLMs) and pre-trained text-to-image (T2I) models, namely OpenLEAF.
For model assessment, we first propose to use large multi-modal models (LMMs) to evaluate the entity and style consistencies of open-domain interleaved image-text sequences.
arXiv Detail & Related papers (2023-10-11T17:58:33Z) - Generating Explanations in Medical Question-Answering by Expectation
Maximization Inference over Evidence [33.018873142559286]
We propose a novel approach for generating natural language explanations for answers predicted by medical QA systems.
Our system extract knowledge from medical textbooks to enhance the quality of explanations during the explanation generation process.
arXiv Detail & Related papers (2023-10-02T16:00:37Z) - Med-Flamingo: a Multimodal Medical Few-shot Learner [58.85676013818811]
We propose Med-Flamingo, a multimodal few-shot learner adapted to the medical domain.
Based on OpenFlamingo-9B, we continue pre-training on paired and interleaved medical image-text data from publications and textbooks.
We conduct the first human evaluation for generative medical VQA where physicians review the problems and blinded generations in an interactive app.
arXiv Detail & Related papers (2023-07-27T20:36:02Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - GQE-PRF: Generative Query Expansion with Pseudo-Relevance Feedback [8.142861977776256]
We propose a novel approach which effectively integrates text generation models into PRF-based query expansion.
Our approach generates augmented query terms via neural text generation models conditioned on both the initial query and pseudo-relevance feedback.
We evaluate the performance of our approach on information retrieval tasks using two benchmark datasets.
arXiv Detail & Related papers (2021-08-13T01:09:02Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
We build and release a large-scale high-quality Medical Dialogue dataset related to 12 types of common Gastrointestinal diseases named MedDG.
We propose two kinds of medical dialogue tasks based on MedDG dataset. One is the next entity prediction and the other is the doctor response generation.
Experimental results show that the pre-train language models and other baselines struggle on both tasks with poor performance in our dataset.
arXiv Detail & Related papers (2020-10-15T03:34:33Z) - Adversarial Mutual Information for Text Generation [62.974883143784616]
We propose Adversarial Mutual Information (AMI): a text generation framework.
AMI is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target.
We show that AMI has potential to lead to a tighter lower bound of maximum mutual information.
arXiv Detail & Related papers (2020-06-30T19:11:51Z) - A Controllable Model of Grounded Response Generation [122.7121624884747]
Current end-to-end neural conversation models inherently lack the flexibility to impose semantic control in the response generation process.
We propose a framework that we call controllable grounded response generation (CGRG)
We show that using this framework, a transformer based model with a novel inductive attention mechanism, trained on a conversation-like Reddit dataset, outperforms strong generation baselines.
arXiv Detail & Related papers (2020-05-01T21:22:08Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
Contextual Discourse Vectors (CDV) is a distributed document representation for efficient answer retrieval from long documents.
Our model leverages a dual encoder architecture with hierarchical LSTM layers and multi-task training to encode the position of clinical entities and aspects alongside the document discourse.
We show that our generalized model significantly outperforms several state-of-the-art baselines for healthcare passage ranking.
arXiv Detail & Related papers (2020-02-03T15:47:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.