論文の概要: SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors
- arxiv url: http://arxiv.org/abs/2405.19597v1
- Date: Thu, 30 May 2024 01:27:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 18:36:41.493478
- Title: SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors
- Title(参考訳): SVFT:特異ベクトルを用いたパラメータ効率の良いファインチューニング
- Authors: Vijay Lingam, Atula Tejaswi, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur, Joydeep Ghosh, Alex Dimakis, Eunsol Choi, Aleksandar Bojchevski, Sujay Sanghavi,
- Abstract要約: 既存の手法と根本的に異なる単純なアプローチであるSVFTを提案する。
SVFTは特異ベクトルの外積のスパース結合として(W)を更新し、これらのスパース結合の係数(スケール)のみを訓練する。
言語とビジョンベンチマークの実験では、SVFTは完全な微調整性能の96%を回復し、パラメータの0.006から0.25%しかトレーニングしていない。
- 参考スコア(独自算出の注目度): 80.6043267994434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Popular parameter-efficient fine-tuning (PEFT) methods, such as LoRA and its variants, freeze pre-trained model weights \(W\) and inject learnable matrices \(\Delta W\). These \(\Delta W\) matrices are structured for efficient parameterization, often using techniques like low-rank approximations or scaling vectors. However, these methods typically show a performance gap compared to full fine-tuning. Although recent PEFT methods have narrowed this gap, they do so at the cost of additional learnable parameters. We propose SVFT, a simple approach that fundamentally differs from existing methods: the structure imposed on \(\Delta W\) depends on the specific weight matrix \(W\). Specifically, SVFT updates \(W\) as a sparse combination of outer products of its singular vectors, training only the coefficients (scales) of these sparse combinations. This approach allows fine-grained control over expressivity through the number of coefficients. Extensive experiments on language and vision benchmarks show that SVFT recovers up to 96% of full fine-tuning performance while training only 0.006 to 0.25% of parameters, outperforming existing methods that only recover up to 85% performance using 0.03 to 0.8% of the trainable parameter budget.
- Abstract(参考訳): LoRAやその変種のような一般的なパラメータ効率の微調整(PEFT)法は、事前訓練されたモデルの重みを凍結し、学習可能な行列を注入する。
これらの(\Delta W\)行列は、しばしばローランク近似やスケーリングベクトルのような手法を用いて、効率的なパラメータ化のために構成される。
しかし、これらの手法は通常、完全な微調整に比べて性能の差を示す。
最近のPEFT法はこのギャップを狭めたが、学習可能な追加パラメータを犠牲にしている。
既存の方法と根本的に異なる単純なアプローチであるSVFTを提案する: \(\Delta W\) に課される構造は、比重行列 \(W\) に依存する。
具体的には、SVFTは特異ベクトルの外積のスパース結合として \(W\) を更新し、これらのスパース結合の係数(スケール)のみを訓練する。
このアプローチは係数数による表現率のきめ細かい制御を可能にする。
言語と視覚のベンチマークに関する大規模な実験によると、SVFTは完全な微調整性能の96%を回復し、パラメータの0.006から0.25%しか訓練していない。
関連論文リスト
- SVFit: Parameter-Efficient Fine-Tuning of Large Pre-Trained Models Using Singular Values [12.137869917556415]
大規模事前学習モデル(LPM)は、多種多様な自然言語処理やコンピュータビジョンタスクにおいて例外的な性能を示した。
これらのモデルを完全に微調整すると、特にリソース制約のある環境では、大きなメモリの問題が発生します。
本稿では,臨界特異値をトレーニング可能なパラメータとして用いた低ランク行列に対する特異値分解(SVD)を利用した新しいPEFT手法であるSVFitを提案する。
論文 参考訳(メタデータ) (2024-09-09T08:44:53Z) - AFLoRA: Adaptive Freezing of Low Rank Adaptation in Parameter Efficient Fine-Tuning of Large Models [5.981614673186146]
私たちは小説を提示する。
-PEFT(Adaptive Freezing of Low Rank Adaptation)法
具体的には、トレーニング可能な低ランク行列の平行経路、すなわち、ダウンプロジェクションとアッププロジェクション行列を加え、それぞれに特徴変換ベクトルが続く。
実験結果から,GLUEベンチマークで評価した結果,平均値0.85%以上の改善を達成できることが確認された。
論文 参考訳(メタデータ) (2024-03-20T03:07:50Z) - LoRETTA: Low-Rank Economic Tensor-Train Adaptation for
Ultra-Low-Parameter Fine-Tuning of Large Language Models [20.5908375260123]
モデル性能を維持しながら計算効率のよい微調整を実現するために,様々なパラメータ効率の微調整技術が提案されている。
テンソル-トレイン分解によりトレーニング可能なパラメータを大幅に削減するフレームワークであるLoRETTAを提案する。
LoRETTAは、LLaMA-2-7Bモデルで最大100倍のパラメータで、最も広く使われているPEFT法よりも同等または優れた性能を実現している。
論文 参考訳(メタデータ) (2024-02-18T01:20:00Z) - APT: Adaptive Pruning and Tuning Pretrained Language Models for Efficient Training and Inference [63.52244442498831]
大規模言語モデル(LM)による微調整と推論は一般的に高価であることが知られている。
LMのパラメータを適応的にプーンし調整するAPTを導入する。
APTは、LMの微調整を最大8倍高速化し、LMのメモリトレーニングのフットプリントを最大70%削減する。
論文 参考訳(メタデータ) (2024-01-22T18:39:40Z) - Parameter-Efficient Fine-Tuning without Introducing New Latency [7.631596468553607]
隠れ表現の代わりに事前学習パラメータに直接アダプタを適用する新しいアダプタ技術を導入する。
提案手法は,性能と記憶効率の両面で新たな最先端性を実現し,完全微調整のパラメータは0.03%に過ぎなかった。
論文 参考訳(メタデータ) (2023-05-26T08:44:42Z) - Numerical Optimizations for Weighted Low-rank Estimation on Language
Model [73.12941276331316]
Singular value decomposition (SVD) は、より小さい行列でターゲット行列を近似する最も一般的な圧縮手法の1つである。
標準SVDは行列内のパラメータを同じ重要性で扱うが、これは単純だが非現実的な仮定である。
本手法は,ニューラルベース言語モデルにおいて,現在のSOTA法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-02T00:58:02Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
既存の微調整法は、事前訓練されたモデルの全てのパラメータ(フル微調整)をチューニングするか、最後の線形層(線形プローブ)のみをチューニングする。
そこで本研究では,SSFと呼ばれるパラメータ効率の高いファインタニング手法を提案する。
論文 参考訳(メタデータ) (2022-10-17T08:14:49Z) - Parameter-Efficient Sparsity for Large Language Models Fine-Tuning [63.321205487234074]
私たちはaを提案します。
Sparse- efficient Sparse Training (PST) は、スパース・アウェア・トレーニング中にトレーニング可能なパラメータの数を減少させる手法である。
多様なネットワーク(BERT、RoBERTa、GPT-2)を用いた実験では、PSTは従来のスパーシリティ法よりも同等以上の性能を示した。
論文 参考訳(メタデータ) (2022-05-23T02:43:45Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
ICL (Few-shot in-context Learning) は、予測を行うたびにトレーニング例を全て処理するので、かなりの計算、メモリ、ストレージコストを発生させる。
パラメータ効率の良い微調整は、モデルの新たなタスクの実行を可能にするために、小さなパラメータセットをトレーニングする、代替パラダイムを提供する。
本稿では,少数ショットICLとパラメータ効率の微調整を厳密に比較し,後者が計算コストを劇的に削減できることを示す。
論文 参考訳(メタデータ) (2022-05-11T17:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。