Few for Many: Tchebycheff Set Scalarization for Many-Objective Optimization
- URL: http://arxiv.org/abs/2405.19650v2
- Date: Tue, 15 Oct 2024 09:57:16 GMT
- Title: Few for Many: Tchebycheff Set Scalarization for Many-Objective Optimization
- Authors: Xi Lin, Yilu Liu, Xiaoyuan Zhang, Fei Liu, Zhenkun Wang, Qingfu Zhang,
- Abstract summary: Multi-objective optimization can be found in many real-world applications where some conflicting objectives can not be optimized by a single solution.
We propose a novel Tchebycheff set scalarization method to find a few representative solutions to cover a large number of objectives.
In this way, each objective can be well addressed by at least one solution in the small solution set.
- Score: 14.355588194787073
- License:
- Abstract: Multi-objective optimization can be found in many real-world applications where some conflicting objectives can not be optimized by a single solution. Existing optimization methods often focus on finding a set of Pareto solutions with different optimal trade-offs among the objectives. However, the required number of solutions to well approximate the whole Pareto optimal set could be exponentially large with respect to the number of objectives, which makes these methods unsuitable for handling many optimization objectives. In this work, instead of finding a dense set of Pareto solutions, we propose a novel Tchebycheff set scalarization method to find a few representative solutions (e.g., 5) to cover a large number of objectives (e.g., $>100$) in a collaborative and complementary manner. In this way, each objective can be well addressed by at least one solution in the small solution set. In addition, we further develop a smooth Tchebycheff set scalarization approach for efficient optimization with good theoretical guarantees. Experimental studies on different problems with many optimization objectives demonstrate the effectiveness of our proposed method.
Related papers
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
Sequentially solving similar optimization problems under strict runtime constraints is essential for many applications.
We propose learning to predict emphmultiple diverse initial solutions given parameters that define the problem instance.
We find significant and consistent improvement with our method across all evaluation settings and demonstrate that it efficiently scales with the number of initial solutions required.
arXiv Detail & Related papers (2024-11-04T15:17:19Z) - Smooth Tchebycheff Scalarization for Multi-Objective Optimization [15.047246588148495]
Multi-objective optimization problems can be found in many real-world applications, where the objectives often conflict each other and cannot be optimized by a single solution.
We propose a lightweight and efficient smooth Tchebycheff scalarization approach for gradient-based multi-objective optimization.
arXiv Detail & Related papers (2024-02-29T12:03:05Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Optimization on Pareto sets: On a theory of multi-objective optimization [7.907376287850398]
In multi-objective optimization, a single decision vector must balance the trade-offs between many objectives.
We consider a more practically significant optimization problem, where the goal is to optimize a constrained set.
arXiv Detail & Related papers (2023-08-04T05:55:52Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Discovering Many Diverse Solutions with Bayesian Optimization [7.136022698519586]
We propose Rank-Ordered Bayesian Optimization with Trust-regions (ROBOT)
ROBOT aims to find a portfolio of high-performing solutions that are diverse according to a user-specified diversity metric.
We show that it can discover large sets of high-performing diverse solutions while requiring few additional function evaluations.
arXiv Detail & Related papers (2022-10-20T01:56:38Z) - An Approach to Ordering Objectives and Pareto Efficient Solutions [0.0]
Solutions to multi-objective optimization problems can generally not be compared or ordered.
Decision-makers are often made to believe that scaled objectives can be compared.
We present a method that uses the probability integral transform in order to map the objectives of a problem into scores that all share the same range.
arXiv Detail & Related papers (2022-05-30T17:55:53Z) - Optimizer Amalgamation [124.33523126363728]
We are motivated to study a new problem named Amalgamation: how can we best combine a pool of "teacher" amalgamations into a single "student" that can have stronger problem-specific performance?
First, we define three differentiable mechanisms to amalgamate a pool of analyticals by gradient descent.
In order to reduce variance of the process, we also explore methods to stabilize the process by perturbing the target.
arXiv Detail & Related papers (2022-03-12T16:07:57Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Goal Seeking Quadratic Unconstrained Binary Optimization [0.5439020425819]
We present two variants of goal-seeking QUBO that minimize the deviation from the goal through a tabu-search based greedy one-flip.
In this paper, we present two variants of goal-seeking QUBO that minimize the deviation from the goal through a tabu-search based greedy one-flip.
arXiv Detail & Related papers (2021-03-24T03:03:13Z) - Pareto Multi-Task Learning [53.90732663046125]
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously.
It is often impossible to find one single solution to optimize all the tasks, since different tasks might conflict with each other.
Recently, a novel method is proposed to find one single Pareto optimal solution with good trade-off among different tasks by casting multi-task learning as multiobjective optimization.
arXiv Detail & Related papers (2019-12-30T08:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.