論文の概要: Autonomous Driving with Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2405.19687v1
- Date: Thu, 30 May 2024 04:57:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 18:06:52.662973
- Title: Autonomous Driving with Spiking Neural Networks
- Title(参考訳): スパイクニューラルネットワークによる自律走行
- Authors: Rui-Jie Zhu, Ziqing Wang, Leilani Gilpin, Jason K. Eshraghian,
- Abstract要約: Spiking Autonomous Driving (名前)は、自律運転システムによって直面するエネルギー問題に対処する最初の統合スパイキングニューラルネットワーク(SNN)である。
SADはエンドツーエンドでトレーニングされており、知覚、予測、計画という3つの主要なモジュールで構成されている。
- 参考スコア(独自算出の注目度): 5.191057765703533
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Autonomous driving demands an integrated approach that encompasses perception, prediction, and planning, all while operating under strict energy constraints to enhance scalability and environmental sustainability. We present Spiking Autonomous Driving (\name{}), the first unified Spiking Neural Network (SNN) to address the energy challenges faced by autonomous driving systems through its event-driven and energy-efficient nature. SAD is trained end-to-end and consists of three main modules: perception, which processes inputs from multi-view cameras to construct a spatiotemporal bird's eye view; prediction, which utilizes a novel dual-pathway with spiking neurons to forecast future states; and planning, which generates safe trajectories considering predicted occupancy, traffic rules, and ride comfort. Evaluated on the nuScenes dataset, SAD achieves competitive performance in perception, prediction, and planning tasks, while drawing upon the energy efficiency of SNNs. This work highlights the potential of neuromorphic computing to be applied to energy-efficient autonomous driving, a critical step toward sustainable and safety-critical automotive technology. Our code is available at \url{https://github.com/ridgerchu/SAD}.
- Abstract(参考訳): 自律運転は、スケーラビリティと環境持続可能性を高めるために厳しいエネルギー制約の下で運用しながら、知覚、予測、計画を含む統合されたアプローチを要求する。
我々は、イベント駆動とエネルギー効率の両面で自律運転システムに直面するエネルギー問題に対処するために、最初の統合スパイキングニューラルネットワーク(SNN)であるスパイキング自律運転(\name{})を提示する。
SADはエンドツーエンドで訓練され、多視点カメラからの入力を処理して時空間の鳥の視線を構築する知覚、スパイクニューロンによる新しいデュアルパスを利用して将来の状態を予測する予測、予測占有率、交通規則、乗り心地を考慮した安全な軌道を生成する計画の3つの主要モジュールから構成される。
SADはnuScenesデータセットに基づいて評価され、SNNのエネルギー効率を図りながら、知覚、予測、計画タスクにおける競争性能を達成する。
この研究は、エネルギー効率の高い自動運転に適用されるニューロモルフィックコンピューティングの可能性を強調している。
私たちのコードは \url{https://github.com/ridgerchu/SAD} で利用可能です。
関連論文リスト
- 3D Object Visibility Prediction in Autonomous Driving [6.802572869909114]
本稿では,新しい属性とその対応するアルゴリズムである3Dオブジェクトの可視性について述べる。
この属性の提案とその計算戦略は、下流タスクの能力を拡大することを目的としている。
論文 参考訳(メタデータ) (2024-03-06T13:07:42Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WMは、既存のエンド・ツー・エンドの計画モデルと互換性のある世界初のドライビングワールドモデルである。
ドライビングシーンで高忠実度マルチビュー映像を生成する。
論文 参考訳(メタデータ) (2023-11-29T18:59:47Z) - Autonomous Driving using Spiking Neural Networks on Dynamic Vision
Sensor Data: A Case Study of Traffic Light Change Detection [0.0]
スパイキングニューラルネットワーク(SNN)は、情報処理と意思決定のための代替モデルを提供する。
自動運転にSNNを用いた最近の研究は主に、簡易なシミュレーション環境における車線維持のような単純なタスクに焦点を当てている。
本研究は,実車上でSNNを使用するための重要なステップであるCARLAシミュレータにおける実写走行シーンについて,SNNについて検討する。
論文 参考訳(メタデータ) (2023-09-27T23:31:30Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
本稿では,将来の占有予測を生成するための時間的予測ネットワークパイプラインを提案する。
現在のSOTAと比較して、我々の手法は3秒の長い水平線での占有を予測している。
我々は、さらなる研究を支援するために、nulisに基づくグリッド占有データセットを公開します。
論文 参考訳(メタデータ) (2022-05-06T13:45:32Z) - Context-Aware Scene Prediction Network (CASPNet) [3.390468002706074]
我々は,新しい畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)に基づくアーキテクチャを用いて,すべての道路利用者の動きを共同で学習し,予測する。
我々の手法は予測ベンチマークで最先端の結果に到達する。
論文 参考訳(メタデータ) (2022-01-18T12:52:01Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - Capture Uncertainties in Deep Neural Networks for Safe Operation of
Autonomous Driving Vehicles [16.598370537756068]
ディープニューラルネットワーク(DNN)に基づく認識と車両の動きの不確実性は、安全な自動運転車両の開発に課題をもたらす。
DNNに基づく認識の不確かさと動きの不確かさの定量化と伝播を特徴とする安全な動き計画フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-11T09:41:54Z) - Learning Interpretable End-to-End Vision-Based Motion Planning for
Autonomous Driving with Optical Flow Distillation [11.638798976654327]
IVMPは、自動運転のための解釈可能なエンドツーエンドのビジョンベースのモーションプランニングアプローチです。
我々は,実時間性能を維持しつつネットワークを効果的に強化できる光フロー蒸留パラダイムを開発した。
我々のIVMPは、人間ドライバーをはるかに高い成功率で模倣する最先端のアプローチを著しく上回っています。
論文 参考訳(メタデータ) (2021-04-18T13:51:25Z) - Deep Structured Reactive Planning [94.92994828905984]
自動運転のための新しいデータ駆動型リアクティブ計画目標を提案する。
本モデルは,非常に複雑な操作を成功させる上で,非反応性変種よりも優れることを示す。
論文 参考訳(メタデータ) (2021-01-18T01:43:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。