Universal Online Convex Optimization with $1$ Projection per Round
- URL: http://arxiv.org/abs/2405.19705v1
- Date: Thu, 30 May 2024 05:29:40 GMT
- Title: Universal Online Convex Optimization with $1$ Projection per Round
- Authors: Wenhao Yang, Yibo Wang, Peng Zhao, Lijun Zhang,
- Abstract summary: We develop universal algorithms that simultaneously attain minimax rates for multiple types of convex functions.
We employ a surrogate loss defined over simpler domains to develop universal OCO algorithms that only require $1$ projection.
Our analysis sheds new light on the surrogate loss, facilitating rigorous examination of the discrepancy between the regret of the original loss and that of the surrogate loss.
- Score: 31.16522982351235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To address the uncertainty in function types, recent progress in online convex optimization (OCO) has spurred the development of universal algorithms that simultaneously attain minimax rates for multiple types of convex functions. However, for a $T$-round online problem, state-of-the-art methods typically conduct $O(\log T)$ projections onto the domain in each round, a process potentially time-consuming with complicated feasible sets. In this paper, inspired by the black-box reduction of Cutkosky and Orabona (2018), we employ a surrogate loss defined over simpler domains to develop universal OCO algorithms that only require $1$ projection. Embracing the framework of prediction with expert advice, we maintain a set of experts for each type of functions and aggregate their predictions via a meta-algorithm. The crux of our approach lies in a uniquely designed expert-loss for strongly convex functions, stemming from an innovative decomposition of the regret into the meta-regret and the expert-regret. Our analysis sheds new light on the surrogate loss, facilitating a rigorous examination of the discrepancy between the regret of the original loss and that of the surrogate loss, and carefully controlling meta-regret under the strong convexity condition. In this way, with only $1$ projection per round, we establish optimal regret bounds for general convex, exponentially concave, and strongly convex functions simultaneously. Furthermore, we enhance the expert-loss to exploit the smoothness property, and demonstrate that our algorithm can attain small-loss regret for multiple types of convex and smooth functions.
Related papers
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Adaptive, Doubly Optimal No-Regret Learning in Strongly Monotone and Exp-Concave Games with Gradient Feedback [75.29048190099523]
Online gradient descent (OGD) is well known to be doubly optimal under strong convexity or monotonicity assumptions.
In this paper, we design a fully adaptive OGD algorithm, textsfAdaOGD, that does not require a priori knowledge of these parameters.
arXiv Detail & Related papers (2023-10-21T18:38:13Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
We propose an online convex optimization approach with two different levels of adaptivity.
We obtain $mathcalO(log V_T)$, $mathcalO(d log V_T)$ and $hatmathcalO(sqrtV_T)$ regret bounds for strongly convex, exp-concave and convex loss functions.
arXiv Detail & Related papers (2023-07-17T09:55:35Z) - Adaptive Bandit Convex Optimization with Heterogeneous Curvature [40.368893108265056]
We study a heterogeneous setting where each function has its own curvature that is only revealed after the learner makes a decision.
We develop an efficient algorithm that is able to adapt to the curvature on the fly.
arXiv Detail & Related papers (2022-02-12T21:55:42Z) - Lazy Lagrangians with Predictions for Online Learning [24.18464455081512]
We consider the general problem of online convex optimization with time-varying additive constraints.
A novel primal-dual algorithm is designed by combining a Follow-The-Regularized-Leader iteration with prediction-adaptive dynamic steps.
Our work extends the FTRL framework for this constrained OCO setting and outperforms the respective state-of-the-art greedy-based solutions.
arXiv Detail & Related papers (2022-01-08T21:49:10Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Adapting to Misspecification in Contextual Bandits [82.55565343668246]
We introduce a new family of oracle-efficient algorithms for $varepsilon$-misspecified contextual bandits.
We obtain the first algorithm that achieves the optimal $O(dsqrtT + varepsilonsqrtdT)$ regret bound for unknown misspecification level.
arXiv Detail & Related papers (2021-07-12T21:30:41Z) - Universal Online Convex Optimization Meets Second-order Bounds [74.0120666722487]
We propose a simple strategy for universal online convex optimization.
The key idea is to construct a set of experts to process the original online functions, and deploy a meta-algorithm over the linearized losses.
In this way, we can plug in off-the-shelf online solvers as black-box experts to deliver problem-dependent regret bounds.
arXiv Detail & Related papers (2021-05-08T11:43:49Z) - Projection-free Online Learning over Strongly Convex Sets [24.517908972536432]
We study the special case of online learning over strongly convex sets, for which we first prove that OFW can enjoy a better regret bound of $O(T2/3)$ for general convex losses.
We show that it achieves a regret bound of $O(sqrtT)$ over general convex sets and a better regret bound of $O(sqrtT)$ over strongly convex sets.
arXiv Detail & Related papers (2020-10-16T05:42:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.