Sub-meV Linewidths in Polarized Low-Temperature Photoluminescence of 2D PbS Nanoplatelets
- URL: http://arxiv.org/abs/2405.19821v2
- Date: Wed, 11 Sep 2024 08:03:38 GMT
- Title: Sub-meV Linewidths in Polarized Low-Temperature Photoluminescence of 2D PbS Nanoplatelets
- Authors: Pengji Li, Leon Biesterfeld, Lars Klepzig, Jingzhong Yang, Huu Thoai Ngo, Ahmed Addad, Tom N. Rakow, Ruolin Guan, Eddy P. Rugeramigabo, Ivan Zaluzhnyy, Frank Schreiber, Louis Biadala, Jannika Lauth, Michael Zopf,
- Abstract summary: Two-dimensional (2D) PbS nanoplatelets (NPLs) exhibiting excitonic emission at 720 nm (1.7 eV)
We present the first comprehensive analysis of low-temperature PL from this material class.
At 4K, we observe unique PL features in single PbS NPLs, including narrow zero-phonon lines with line widths down to 0.6 meV and a linear degree of polarization up to 90%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Colloidal semiconductor nanocrystals are promising materials for classical and quantum light sources due to their versatile chemistry and efficient photoluminescence (PL) properties. While visible emitters are well-established, the pursuit of excellent (near-)infrared sources continues. One notable candidate in this regard are photoluminescent two-dimensional (2D) PbS nanoplatelets (NPLs) exhibiting excitonic emission at 720 nm (1.7 eV) directly tying to the typical emission range limit of CdSe NPLs. Here, we present the first comprehensive analysis of low-temperature PL from this material class. Ultrathin 2D PbS NPLs exhibit high crystallinity confirmed by scanning transmission electron microscopy, and revealing Moire patterns in overlapping structures. At 4K, we observe unique PL features in single PbS NPLs, including narrow zero-phonon lines with line widths down to 0.6 meV and a linear degree of polarization up to 90%. Time-resolved measurements identify trions as the dominant emission source with a 2.3 ns decay time. Sub-meV spectral diffusion and no immanent blinking over minutes is observed, as well as discrete spectral jumps without memory effects. These findings advance the understanding and underpin the potential of colloidal PbS NPLs for optical and quantum technologies.
Related papers
- Room-temperature efficient single-photon generation from CdSe/ZnS nanoplateletes [0.0]
colloidal semiconductor nanoplatelets (NPLs) have emerged as a highly promising new class of materials.
NPLs with their atomic-scale thickness and one-dimensional quantum confinement are promising candidates for single-photon sources.
arXiv Detail & Related papers (2024-07-31T10:21:56Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Photophysics of Intrinsic Single-Photon Emitters in Silicon Nitride at
Low Temperatures [97.5153823429076]
A robust process for fabricating intrinsic single-photon emitters in silicon nitride has been recently established.
These emitters show promise for quantum applications due to room-temperature operation and monolithic integration with the technologically mature silicon nitride photonics platform.
arXiv Detail & Related papers (2023-01-25T19:53:56Z) - Photoluminescence imaging of single photon emitters within nanoscale
strain profiles in monolayer WSe$_2$ [0.0]
Local deformation of van der Waals materials provides a powerful approach to create chip-compatible single-photon emitters (SPEs)
Here we investigate SPEs with single-photon purity up to 98% created in monolayer WSe$indentation.
Using photoluminescence imaging in combination with atomic force microscopy, we locate single-photon emitting sites on a deep sub-wavelength spatial scale.
arXiv Detail & Related papers (2023-01-23T15:21:28Z) - Localized creation of yellow single photon emitting carbon complexes in
hexagonal boron nitride [27.965277627489417]
Single photon emitters in solid-state crystals have received a lot of attention as building blocks for numerous quantum technology applications.
Here, we demonstrate the localized fabrication of hBN emitter arrays by electron beam irradiation.
Our measurements of optically detected magnetic resonance have not revealed any addressable spin states.
arXiv Detail & Related papers (2022-08-29T10:44:12Z) - Van der Waals Materials for Applications in Nanophotonics [49.66467977110429]
We present an emerging class of layered van der Waals (vdW) crystals as a viable nanophotonics platform.
We extract the dielectric response of 11 mechanically exfoliated thin-film (20-200 nm) van der Waals crystals, revealing high refractive indices up to n = 5.
We fabricate nanoantennas on SiO$$ and gold utilizing the compatibility of vdW thin films with a variety of substrates.
arXiv Detail & Related papers (2022-08-12T12:57:14Z) - Near-monochromatic tuneable cryogenic niobium electron field emitter [48.7576911714538]
We describe electron field emission from a monocrystalline, superconducting niobium nanotip at a temperature of 5.9 K.
The emitted electron energy spectrum reveals an ultra-narrow distribution down to 16 meV.
This source will decrease the impact of lens aberration and enable new modes in low-energy electron microscopy, electron energy loss spectroscopy, and high-resolution vibrational spectroscopy.
arXiv Detail & Related papers (2022-05-11T20:46:21Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Cavity Quantum Electrodynamics Design with Single Photon Emitters in
Hexagonal Boron Nitride [6.352389759470726]
We numerically investigate the cavity quantum electrodynamics (cavity-QED) scheme incorporating defect-enabled single photon emitters in h-BN microdisk resonators.
The whispering-gallery nature of microdisks can support multiple families of cavity resonances with different radial and azimuthal mode indices simultaneously.
This study contributes toward realizing h-BN photonic components, such as low-threshold microcavity lasers and high-purity single photon sources.
arXiv Detail & Related papers (2021-06-05T21:53:44Z) - Site-Controlled Telecom Single-Photon Emitters in Atomically-thin MoTe2 [16.4960557877626]
Quantum emitters (QEs) in two-dimensional transition metal dichalcogenides (2D TMDCs) have advanced to the forefront of quantum communication and transduction research.
Here we report a deterministic creation of such telecom QEs emitting over the 1080 to 1550 nm wavelength range via coupling of 2D molybdenum ditelluride (MoTe2) to strain inducing nano-pillar arrays.
arXiv Detail & Related papers (2021-05-02T23:38:21Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.