Photoluminescence imaging of single photon emitters within nanoscale
strain profiles in monolayer WSe$_2$
- URL: http://arxiv.org/abs/2301.09478v1
- Date: Mon, 23 Jan 2023 15:21:28 GMT
- Title: Photoluminescence imaging of single photon emitters within nanoscale
strain profiles in monolayer WSe$_2$
- Authors: Artem N. Abramov, Igor Y. Chestnov, Ekaterina S. Alimova, Tatiana
Ivanova, Ivan S. Mukhin, Dmitry N. Krizhanovskii, Ivan A. Shelykh, Ivan V.
Iorsh and Vasily Kravtsov
- Abstract summary: Local deformation of van der Waals materials provides a powerful approach to create chip-compatible single-photon emitters (SPEs)
Here we investigate SPEs with single-photon purity up to 98% created in monolayer WSe$indentation.
Using photoluminescence imaging in combination with atomic force microscopy, we locate single-photon emitting sites on a deep sub-wavelength spatial scale.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Local deformation of atomically thin van der Waals materials provides a
powerful approach to create site-controlled chip-compatible single-photon
emitters (SPEs). However, the microscopic mechanisms underlying the formation
of such strain-induced SPEs are still not fully clear, which hinders further
efforts in their deterministic integration with nanophotonic structures for
developing practical on-chip sources of quantum light. Here we investigate SPEs
with single-photon purity up to 98% created in monolayer WSe$_2$ via
nanoindentation. Using photoluminescence imaging in combination with atomic
force microscopy, we locate single-photon emitting sites on a deep
sub-wavelength spatial scale and reconstruct the details of the surrounding
local strain potential. The obtained results suggest that the origin of the
observed single-photon emission is likely related to strain-induced spectral
shift of dark excitonic states and their hybridization with localized states of
individual defects.
Related papers
- Giant Purcell broadening and Lamb shift for DNA-assembled near-infrared quantum emitters [0.0]
Engineering of plasmonic modes enables cavity-mediated fluorescence far detuned from the zero-phonon-line.
In the future, this approach may also allow to design efficient quantum emitters at infrared wavelengths.
arXiv Detail & Related papers (2024-07-28T15:35:04Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Nanoparticle Stressor-Induced Single-photon Sources in Monolayer WS$_2$
Emitting into a Narrowband Visible Spectral Range [0.0]
A van der Waals heterostructure containing an atomically thin monolayer transition-metal dichalcogenide as a single-photon emitting layer is emerging as an intriguing solid-state quantum-photonic platform.
arXiv Detail & Related papers (2023-10-11T15:19:02Z) - Enhanced Spectral Density of a Single Germanium Vacancy Center in a
Nanodiamond by Cavity-Integration [35.759786254573896]
Color centers in diamond, among them the negatively-charged germanium vacancy (GeV$-$), are promising candidates for many applications of quantum optics.
We demonstrate the transfer of a nanodiamond containing a single ingrown GeV- center with excellent optical properties to an open Fabry-P'erot microcavity.
arXiv Detail & Related papers (2023-07-03T10:33:06Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Spatially entangled photon-pairs from lithium niobate nonlocal
metasurfaces [2.4042647226715017]
Multi-photon states that are entangled in spatial or angular domains are an essential resource for quantum imaging and sensing applications.
We predict and demonstrate experimentally the generation of spatially entangled photon pairs through spontaneous parametric down-conversion.
Results pave the way to miniaturization of various quantum devices by incorporating ultra-thin metasurfaces functioning as room-temperature sources of quantum-entangled photons.
arXiv Detail & Related papers (2022-04-04T23:35:57Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Plexcitonic quantum light emission from nanoparticle-on-mirror cavities [0.0]
We model a dark-field set-up and explore the photon statistics of the scattered light under grazing laser illumination.
We reveal that the rich plasmonic spectrum of the nanocavity offers unexplored mechanisms for nonclassical light generation.
arXiv Detail & Related papers (2021-12-18T13:22:11Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.