Similarity is Not All You Need: Endowing Retrieval Augmented Generation with Multi Layered Thoughts
- URL: http://arxiv.org/abs/2405.19893v1
- Date: Thu, 30 May 2024 09:50:38 GMT
- Title: Similarity is Not All You Need: Endowing Retrieval Augmented Generation with Multi Layered Thoughts
- Authors: Chunjing Gan, Dan Yang, Binbin Hu, Hanxiao Zhang, Siyuan Li, Ziqi Liu, Yue Shen, Lin Ju, Zhiqiang Zhang, Jinjie Gu, Lei Liang, Jun Zhou,
- Abstract summary: We argue that similarity is not always the panacea and totally relying on similarity would sometimes degrade the performance of retrieval augmented generation.
We propose MetRag, a Multi layEred Thoughts enhanced Retrieval Augmented Generation framework.
- Score: 39.47316836096974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, large language models (LLMs) have made remarkable achievements in various domains. However, the untimeliness and cost of knowledge updates coupled with hallucination issues of LLMs have curtailed their applications in knowledge intensive tasks, where retrieval augmented generation (RAG) can be of help. Nevertheless, existing retrieval augmented models typically use similarity as a bridge between queries and documents and follow a retrieve then read procedure. In this work, we argue that similarity is not always the panacea and totally relying on similarity would sometimes degrade the performance of retrieval augmented generation. To this end, we propose MetRag, a Multi layEred Thoughts enhanced Retrieval Augmented Generation framework. To begin with, beyond existing similarity oriented thought, we embrace a small scale utility model that draws supervision from an LLM for utility oriented thought and further come up with a smarter model by comprehensively combining the similarity and utility oriented thoughts. Furthermore, given the fact that the retrieved document set tends to be huge and using them in isolation makes it difficult to capture the commonalities and characteristics among them, we propose to make an LLM as a task adaptive summarizer to endow retrieval augmented generation with compactness-oriented thought. Finally, with multi layered thoughts from the precedent stages, an LLM is called for knowledge augmented generation. Extensive experiments on knowledge-intensive tasks have demonstrated the superiority of MetRag.
Related papers
- HeteRAG: A Heterogeneous Retrieval-augmented Generation Framework with Decoupled Knowledge Representations [36.61614799098233]
Retrieval-augmented generation (RAG) methods can enhance the performance of LLMs.
Existing RAG methods typically employ identical representations of knowledge chunks for both retrieval and generation.
We propose a heterogeneous RAG framework (myname) that decouples the representations of knowledge chunks for retrieval and generation.
arXiv Detail & Related papers (2025-04-12T13:12:54Z) - CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning [0.8192907805418583]
Chain-of-Associated-Thoughts (CoAT) framework introduces an innovative synergy between the Monte Carlo Tree Search (MCTS) algorithm and a dynamic mechanism for integrating new key information, termed 'associative memory'
By combining the structured exploration capabilities of MCTS with the adaptive learning capacity of associative memory, CoAT significantly expands the LLM search space, enabling our framework to explore diverse reasoning pathways and dynamically update its knowledge base in real-time.
These experiments demonstrated that our framework outperforms conventional inference processes on accuracy, coherence, and diversity.
arXiv Detail & Related papers (2025-02-04T15:10:33Z) - Think More, Hallucinate Less: Mitigating Hallucinations via Dual Process of Fast and Slow Thinking [124.69672273754144]
HaluSearch is a novel framework that incorporates tree search-based algorithms.
It frames text generation as a step-by-step reasoning process.
We introduce a hierarchical thinking system switch mechanism inspired by the dual process theory in cognitive science.
arXiv Detail & Related papers (2025-01-02T15:36:50Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - OneGen: Efficient One-Pass Unified Generation and Retrieval for LLMs [44.054569398300266]
One-pass Generation and retrieval framework (OneGen)
OneGen bridges the traditionally separate training approaches for generation and retrieval by incorporating retrieval tokens generated autoregressively.
Results show that integrating generation and retrieval within the same context preserves the generative capabilities of LLMs while improving retrieval performance.
arXiv Detail & Related papers (2024-09-08T16:35:19Z) - A + B: A General Generator-Reader Framework for Optimizing LLMs to Unleash Synergy Potential [20.1396255995056]
Retrieval-Augmented Generation (RAG) is an effective solution to supplement necessary knowledge to large language models (LLMs)
"generate-then-read" pipeline is proposed to replace the retrieval stage with generation from the LLM itself.
This paper formalizes a general "A + B" framework with varying combinations of foundation models and types for systematic investigation.
arXiv Detail & Related papers (2024-06-06T11:14:27Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
Large Language Models (LLMs) exhibit remarkable capabilities but are prone to generating inaccurate or hallucinatory responses.
This limitation stems from their reliance on vast pretraining datasets, making them susceptible to errors in unseen scenarios.
Retrieval-Augmented Generation (RAG) addresses this by incorporating external, relevant documents into the response generation process.
arXiv Detail & Related papers (2024-03-31T08:58:54Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.