Unleashing Realistic Air Quality Forecasting: Introducing the
Ready-to-Use PurpleAirSF Dataset
- URL: http://arxiv.org/abs/2306.13948v2
- Date: Mon, 13 Nov 2023 12:08:31 GMT
- Title: Unleashing Realistic Air Quality Forecasting: Introducing the
Ready-to-Use PurpleAirSF Dataset
- Authors: Jingwei Zuo, Wenbin Li, Michele Baldo and Hakim Hacid
- Abstract summary: This paper introduces PurpleAirSF, a comprehensive and easily accessible dataset from the PurpleAir network.
We present a detailed account of the data collection and processing methods employed to build PurpleAirSF.
We conduct preliminary experiments using both classic and modern-temporal forecasting models, thereby establishing a benchmark for future air quality forecasting tasks.
- Score: 4.190243190157989
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Air quality forecasting has garnered significant attention recently, with
data-driven models taking center stage due to advancements in machine learning
and deep learning models. However, researchers face challenges with complex
data acquisition and the lack of open-sourced datasets, hindering efficient
model validation. This paper introduces PurpleAirSF, a comprehensive and easily
accessible dataset collected from the PurpleAir network. With its high temporal
resolution, various air quality measures, and diverse geographical coverage,
this dataset serves as a useful tool for researchers aiming to develop novel
forecasting models, study air pollution patterns, and investigate their impacts
on health and the environment. We present a detailed account of the data
collection and processing methods employed to build PurpleAirSF. Furthermore,
we conduct preliminary experiments using both classic and modern
spatio-temporal forecasting models, thereby establishing a benchmark for future
air quality forecasting tasks.
Related papers
- Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts [0.11249583407496218]
Air pollution poses a significant threat to public health and well-being, particularly in urban areas.
This study introduces a series of machine-learning models that integrate data from the Sentinel-5P satellite, meteorological conditions, and topological characteristics to forecast future levels of five major pollutants.
arXiv Detail & Related papers (2024-05-30T10:02:53Z) - Efficient Subseasonal Weather Forecast using Teleconnection-informed
Transformers [29.33938664834226]
Subseasonal forecasting is pivotal for agriculture, water resource management, and early warning of disasters.
Recent advances in machine learning have revolutionized weather forecasting by achieving competitive predictive skills to numerical models.
However, training such foundation models requires thousands of GPU days, which causes substantial carbon emissions.
arXiv Detail & Related papers (2024-01-31T14:27:35Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Air Quality Forecasting Using Machine Learning: A Global perspective
with Relevance to Low-Resource Settings [0.0]
Air pollution stands as the fourth leading cause of death globally.
This study proposes a novel machine learning approach for accurate air quality prediction using two months of air quality data.
arXiv Detail & Related papers (2024-01-09T05:52:02Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - GreenEyes: An Air Quality Evaluating Model based on WaveNet [11.513011576336744]
We propose a deep neural network model, which consists of a WaveNet-based backbone block for learning representations of sequences and an LSTM with a Temporal Attention module.
We show our model can effectively predict the air quality level of the next timestamp given any segment of the air quality data from the data set.
arXiv Detail & Related papers (2022-12-08T10:28:57Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.