GenKubeSec: LLM-Based Kubernetes Misconfiguration Detection, Localization, Reasoning, and Remediation
- URL: http://arxiv.org/abs/2405.19954v1
- Date: Thu, 30 May 2024 11:18:52 GMT
- Title: GenKubeSec: LLM-Based Kubernetes Misconfiguration Detection, Localization, Reasoning, and Remediation
- Authors: Ehud Malul, Yair Meidan, Dudu Mimran, Yuval Elovici, Asaf Shabtai,
- Abstract summary: Rule-based (RB) tools for KCF misconfiguration detection rely on static rule sets, making them inherently limited and unable to detect newly-discovered misconfigurations.
We propose GenKubeSec, a comprehensive and adaptive, LLM-based method, which, in addition to detecting a wide variety of KCF misconfigurations, also identifies the exact location of the misconfigurations and provides detailed reasoning about them.
- Score: 24.312198733476063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key challenge associated with Kubernetes configuration files (KCFs) is that they are often highly complex and error-prone, leading to security vulnerabilities and operational setbacks. Rule-based (RB) tools for KCF misconfiguration detection rely on static rule sets, making them inherently limited and unable to detect newly-discovered misconfigurations. RB tools also suffer from misdetection, since mistakes are likely when coding the detection rules. Recent methods for detecting and remediating KCF misconfigurations are limited in terms of their scalability and detection coverage, or due to the fact that they have high expertise requirements and do not offer automated remediation along with misconfiguration detection. Novel approaches that employ LLMs in their pipeline rely on API-based, general-purpose, and mainly commercial models. Thus, they pose security challenges, have inconsistent classification performance, and can be costly. In this paper, we propose GenKubeSec, a comprehensive and adaptive, LLM-based method, which, in addition to detecting a wide variety of KCF misconfigurations, also identifies the exact location of the misconfigurations and provides detailed reasoning about them, along with suggested remediation. When empirically compared with three industry-standard RB tools, GenKubeSec achieved equivalent precision (0.990) and superior recall (0.999). When a random sample of KCFs was examined by a Kubernetes security expert, GenKubeSec's explanations as to misconfiguration localization, reasoning and remediation were 100% correct, informative and useful. To facilitate further advancements in this domain, we share the unique dataset we collected, a unified misconfiguration index we developed for label standardization, our experimentation code, and GenKubeSec itself as an open-source tool.
Related papers
- Characterizing the Sensitivity to Individual Bit Flips in Client-Side Operations of the CKKS Scheme [0.0]
Homomorphic Encryption (HE) enables computation on encrypted data without decryption, making it a cornerstone of privacy-preserving computation in untrusted environments.<n>HE sees growing adoption in sensitive applications such as secure machine learning and confidential data analysis ensuring its robustness against errors becomes critical.
arXiv Detail & Related papers (2025-07-28T14:42:09Z) - Conformal Object Detection by Sequential Risk Control [3.6248657646376707]
Conformal Prediction is a post-hoc procedure which offers statistical guarantees that are valid for any dataset size.<n>We formally define the problem of Conformal Object Detection (COD)<n>We introduce a novel method, Sequential Conformal Risk Control (SeqCRC), that extends the statistical guarantees of Conformal Risk Control (CRC) to two sequential tasks.<n>We present a conformal toolkit, enabling replication and further exploration of our methods.
arXiv Detail & Related papers (2025-05-29T22:19:01Z) - CANTXSec: A Deterministic Intrusion Detection and Prevention System for CAN Bus Monitoring ECU Activations [53.036288487863786]
We propose CANTXSec, the first deterministic Intrusion Detection and Prevention system based on physical ECU activations.<n>It detects and prevents classical attacks in the CAN bus, while detecting advanced attacks that have been less investigated in the literature.<n>We prove the effectiveness of our solution on a physical testbed, where we achieve 100% detection accuracy in both classes of attacks while preventing 100% of FIAs.
arXiv Detail & Related papers (2025-05-14T13:37:07Z) - WATCH: Adaptive Monitoring for AI Deployments via Weighted-Conformal Martingales [13.807613678989664]
Methods for nonparametric sequential testing -- especially conformal test martingales (CTMs) and anytime-valid inference -- offer promising tools for this monitoring task.<n>Existing approaches are restricted to monitoring limited hypothesis classes or alarm criteria''
arXiv Detail & Related papers (2025-05-07T17:53:47Z) - Case Study: Fine-tuning Small Language Models for Accurate and Private CWE Detection in Python Code [0.0]
Large Language Models (LLMs) have demonstrated significant capabilities in understanding and analyzing code for security vulnerabilities.
This work explores the potential of Small Language Models (SLMs) as a viable alternative for accurate, on-premise vulnerability detection.
arXiv Detail & Related papers (2025-04-23T10:05:27Z) - Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs [60.881609323604685]
Large Language Models (LLMs) accessed via black-box APIs introduce a trust challenge.
Users pay for services based on advertised model capabilities.
providers may covertly substitute the specified model with a cheaper, lower-quality alternative to reduce operational costs.
This lack of transparency undermines fairness, erodes trust, and complicates reliable benchmarking.
arXiv Detail & Related papers (2025-04-07T03:57:41Z) - How Robust Are Router-LLMs? Analysis of the Fragility of LLM Routing Capabilities [62.474732677086855]
Large language model (LLM) routing has emerged as a crucial strategy for balancing computational costs with performance.
We propose the DSC benchmark: Diverse, Simple, and Categorized, an evaluation framework that categorizes router performance across a broad spectrum of query types.
arXiv Detail & Related papers (2025-03-20T19:52:30Z) - CASTLE: Benchmarking Dataset for Static Code Analyzers and LLMs towards CWE Detection [2.5228276786940182]
This paper introduces CASTLE, a benchmarking framework for evaluating the vulnerability detection capabilities of different methods.
We assess 13 static analysis tools, 10 LLMs, and 2 formal verification tools using a hand-crafted dataset of 250 micro-benchmark programs covering 25 common CWEs.
arXiv Detail & Related papers (2025-03-12T14:30:05Z) - Standardizing Structural Causal Models [80.21199731817698]
We propose internally-standardized structural causal models (iSCMs) for benchmarking algorithms.
By construction, iSCMs are not $operatornameVar$-sortable, and as we show experimentally, not $operatornameR2$-sortable either for commonly-used graph families.
arXiv Detail & Related papers (2024-06-17T14:52:21Z) - Adaptive Hierarchical Certification for Segmentation using Randomized Smoothing [87.48628403354351]
certification for machine learning is proving that no adversarial sample can evade a model within a range under certain conditions.
Common certification methods for segmentation use a flat set of fine-grained classes, leading to high abstain rates due to model uncertainty.
We propose a novel, more practical setting, which certifies pixels within a multi-level hierarchy, and adaptively relaxes the certification to a coarser level for unstable components.
arXiv Detail & Related papers (2024-02-13T11:59:43Z) - Patch2QL: Discover Cognate Defects in Open Source Software Supply Chain
With Auto-generated Static Analysis Rules [1.9591497166224197]
We propose a novel technique for detecting cognate defects in OSS through the automatic generation of SAST rules.
Specifically, it extracts key syntax and semantic information from pre- and post-patch versions of code.
We have implemented a prototype tool called Patch2QL and applied it to fundamental OSS in C/C++.
arXiv Detail & Related papers (2024-01-23T02:23:11Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
We propose a mechanism for calibrated detection transformers (Cal-DETR), particularly for Deformable-DETR, UP-DETR and DINO.
We develop an uncertainty-guided logit modulation mechanism that leverages the uncertainty to modulate the class logits.
Results corroborate the effectiveness of Cal-DETR against the competing train-time methods in calibrating both in-domain and out-domain detections.
arXiv Detail & Related papers (2023-11-06T22:13:10Z) - PEOPL: Characterizing Privately Encoded Open Datasets with Public Labels [59.66777287810985]
We introduce information-theoretic scores for privacy and utility, which quantify the average performance of an unfaithful user.
We then theoretically characterize primitives in building families of encoding schemes that motivate the use of random deep neural networks.
arXiv Detail & Related papers (2023-03-31T18:03:53Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Detecting Security Fixes in Open-Source Repositories using Static Code
Analyzers [8.716427214870459]
We study the extent to which the output of off-the-shelf static code analyzers can be used as a source of features to represent commits in Machine Learning (ML) applications.
We investigate how such features can be used to construct embeddings and train ML models to automatically identify source code commits that contain vulnerability fixes.
We find that the combination of our method with commit2vec represents a tangible improvement over the state of the art in the automatic identification of commits that fix vulnerabilities.
arXiv Detail & Related papers (2021-05-07T15:57:17Z) - Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification [4.05739885420409]
We propose a deep learning model that learns to detect some of the common categories of security vulnerabilities in source code efficiently.
The model builds an accurate understanding of code semantics with a lot less learnable parameters.
The proposed AI achieves 98.40% F1-score on specific CWEs from the benchmarked NIST SARD dataset.
arXiv Detail & Related papers (2021-04-19T11:50:36Z) - Uncertainty for Identifying Open-Set Errors in Visual Object Detection [31.533136658421892]
GMM-Det is a real-time method for extracting uncertainty from object detectors to identify and reject open-set errors.
We show that GMM-Det consistently outperforms existing uncertainty techniques for identifying and rejecting open-set detections.
arXiv Detail & Related papers (2021-04-03T07:12:31Z) - End-to-End Object Detection with Transformers [88.06357745922716]
We present a new method that views object detection as a direct set prediction problem.
Our approach streamlines the detection pipeline, effectively removing the need for many hand-designed components.
The main ingredients of the new framework, called DEtection TRansformer or DETR, are a set-based global loss.
arXiv Detail & Related papers (2020-05-26T17:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.