Uncertainty for Identifying Open-Set Errors in Visual Object Detection
- URL: http://arxiv.org/abs/2104.01328v1
- Date: Sat, 3 Apr 2021 07:12:31 GMT
- Title: Uncertainty for Identifying Open-Set Errors in Visual Object Detection
- Authors: Dimity Miller, Niko S\"underhauf, Michael Milford and Feras Dayoub
- Abstract summary: GMM-Det is a real-time method for extracting uncertainty from object detectors to identify and reject open-set errors.
We show that GMM-Det consistently outperforms existing uncertainty techniques for identifying and rejecting open-set detections.
- Score: 31.533136658421892
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deployed into an open world, object detectors are prone to a type of false
positive detection termed open-set errors. We propose GMM-Det, a real-time
method for extracting epistemic uncertainty from object detectors to identify
and reject open-set errors. GMM-Det trains the detector to produce a structured
logit space that is modelled with class-specific Gaussian Mixture Models. At
test time, open-set errors are identified by their low log-probability under
all Gaussian Mixture Models. We test two common detector architectures, Faster
R-CNN and RetinaNet, across three varied datasets spanning robotics and
computer vision. Our results show that GMM-Det consistently outperforms
existing uncertainty techniques for identifying and rejecting open-set
detections, especially at the low-error-rate operating point required for
safety-critical applications. GMM-Det maintains object detection performance,
and introduces only minimal computational overhead. We also introduce a
methodology for converting existing object detection datasets into specific
open-set datasets to consistently evaluate open-set performance in object
detection. Code for GMM-Det and the dataset methodology will be made publicly
available.
Related papers
- On the Inherent Robustness of One-Stage Object Detection against Out-of-Distribution Data [6.7236795813629]
We propose a novel detection algorithm for detecting unknown objects in image data.
It exploits supervised dimensionality reduction techniques to mitigate the effects of the curse of dimensionality on the features extracted by the model.
It utilizes high-resolution feature maps to identify potential unknown objects in an unsupervised fashion.
arXiv Detail & Related papers (2024-11-07T10:15:25Z) - OSAD: Open-Set Aircraft Detection in SAR Images [1.1060425537315088]
Open-set detection aims to enable detectors trained on a closed set to detect all known objects and identify unknown objects in open-set environments.
To address these challenges, a novel open-set aircraft detector for SAR images is proposed, named Open-Set Aircraft Detection (OSAD)
It is equipped with three dedicated components: global context modeling (GCM), location quality-driven pseudo labeling generation (LPG), and prototype contrastive learning (PCL)
arXiv Detail & Related papers (2024-11-03T15:06:14Z) - Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
We show that pre-trained large language models (LLMs) are zero-shot batch-level anomaly detectors.
We propose an end-to-end fine-tuning strategy to bring out the potential of LLMs in detecting real anomalies.
arXiv Detail & Related papers (2024-06-24T04:17:03Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
We propose a saliency-based OD algorithm (SalienDet) to detect unknown objects.
Our SalienDet utilizes a saliency-based algorithm to enhance image features for object proposal generation.
We design a dataset relabeling approach to differentiate the unknown objects from all objects in training sample set to achieve Open-World Detection.
arXiv Detail & Related papers (2023-05-11T16:19:44Z) - Hard Nominal Example-aware Template Mutual Matching for Industrial
Anomaly Detection [74.9262846410559]
textbfHard Nominal textbfExample-aware textbfTemplate textbfMutual textbfMatching (HETMM)
textitHETMM aims to construct a robust prototype-based decision boundary, which can precisely distinguish between hard-nominal examples and anomalies.
arXiv Detail & Related papers (2023-03-28T17:54:56Z) - CAT: LoCalization and IdentificAtion Cascade Detection Transformer for
Open-World Object Detection [17.766859354014663]
Open-world object detection requires a model trained from data on known objects to detect both known and unknown objects.
We propose a novel solution called CAT: LoCalization and IdentificAtion Cascade Detection Transformer.
We show that our model outperforms the state-of-the-art in terms of all metrics in the task of OWOD, incremental object detection (IOD) and open-set detection.
arXiv Detail & Related papers (2023-01-05T09:11:16Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation [70.75100533512021]
In this paper, we formulate the label uncertainty problem as the diversity of potentially plausible bounding boxes of objects.
We propose GLENet, a generative framework adapted from conditional variational autoencoders, to model the one-to-many relationship between a typical 3D object and its potential ground-truth bounding boxes with latent variables.
The label uncertainty generated by GLENet is a plug-and-play module and can be conveniently integrated into existing deep 3D detectors.
arXiv Detail & Related papers (2022-07-06T06:26:17Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Labels Are Not Perfect: Inferring Spatial Uncertainty in Object
Detection [26.008419879970365]
In this work, we infer the uncertainty in bounding box labels from LiDAR point clouds based on a generative model.
Comprehensive experiments show that the proposed model reflects complex environmental noises in LiDAR perception and the label quality.
We propose Jaccard IoU as a new evaluation metric that extends IoU by incorporating label uncertainty.
arXiv Detail & Related papers (2020-12-18T09:11:44Z) - Out-Of-Bag Anomaly Detection [0.9449650062296822]
Data anomalies are ubiquitous in real world datasets, and can have an adverse impact on machine learning (ML) systems.
We propose a novel model-based anomaly detection method, that we call Out-of-Bag anomaly detection.
We show our method can improve the accuracy and reliability of an ML system as data pre-processing step via a case study on home valuation.
arXiv Detail & Related papers (2020-09-20T06:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.