論文の概要: Student Answer Forecasting: Transformer-Driven Answer Choice Prediction for Language Learning
- arxiv url: http://arxiv.org/abs/2405.20079v1
- Date: Thu, 30 May 2024 14:09:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 14:08:52.133556
- Title: Student Answer Forecasting: Transformer-Driven Answer Choice Prediction for Language Learning
- Title(参考訳): 学生の回答予測:言語学習におけるトランスフォーマー駆動の回答選択予測
- Authors: Elena Grazia Gado, Tommaso Martorella, Luca Zunino, Paola Mejia-Domenzain, Vinitra Swamy, Jibril Frej, Tanja Käser,
- Abstract要約: 近年の研究では、学生の特定の解答選択に対するパフォーマンスよりも、解答の正しさに焦点が当てられている。
MCQStudentBertは,学生の回答履歴の文脈的理解と質問や回答のテキストを統合した回答予測モデルである。
この作業は、よりパーソナライズされたコンテンツ、モジュール化、そして粒度の細かいサポートへの扉を開く。
- 参考スコア(独自算出の注目度): 2.8887520199545187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intelligent Tutoring Systems (ITS) enhance personalized learning by predicting student answers to provide immediate and customized instruction. However, recent research has primarily focused on the correctness of the answer rather than the student's performance on specific answer choices, limiting insights into students' thought processes and potential misconceptions. To address this gap, we present MCQStudentBert, an answer forecasting model that leverages the capabilities of Large Language Models (LLMs) to integrate contextual understanding of students' answering history along with the text of the questions and answers. By predicting the specific answer choices students are likely to make, practitioners can easily extend the model to new answer choices or remove answer choices for the same multiple-choice question (MCQ) without retraining the model. In particular, we compare MLP, LSTM, BERT, and Mistral 7B architectures to generate embeddings from students' past interactions, which are then incorporated into a finetuned BERT's answer-forecasting mechanism. We apply our pipeline to a dataset of language learning MCQ, gathered from an ITS with over 10,000 students to explore the predictive accuracy of MCQStudentBert, which incorporates student interaction patterns, in comparison to correct answer prediction and traditional mastery-learning feature-based approaches. This work opens the door to more personalized content, modularization, and granular support.
- Abstract(参考訳): Intelligent Tutoring Systems (ITS)は、生徒の回答を予測してパーソナライズされた学習を強化し、即時かつカスタマイズされた指導を提供する。
しかし、近年の研究は、学生の特定の回答選択に対するパフォーマンスよりも、学生の思考過程や潜在的な誤解に対する洞察を制限することに焦点を当てている。
このギャップに対処するために,大規模言語モデル(LLM)の機能を活用し,質問や回答のテキストとともに,学生の回答履歴の文脈的理解を統合する解答予測モデルMCQStudentBertを提案する。
学生が行うであろう特定の解答選択を予測することで、実践者はモデルを新しい解答選択に容易に拡張したり、モデルを再訓練することなく、同じ多重選択質問(MCQ)に対する解答選択を除去することができる。
特に,MLP,LSTM,BERT,Mistral 7Bアーキテクチャを比較し,過去のインタラクションから埋め込みを生成する。
我々は,1万人以上の学生を擁するITSから収集した言語学習MCQのデータセットにパイプラインを適用し,学生のインタラクションパターンを取り入れたMCQStudentBertの予測精度を,正解予測と従来の熟達学習機能に基づくアプローチと比較した。
この作業は、よりパーソナライズされたコンテンツ、モジュール化、そして粒度の細かいサポートへの扉を開く。
関連論文リスト
- Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
大規模言語モデル(LLM)は、自然言語処理タスクの増大に対して、テキスト埋め込みを急速に改善した。
質問応答埋め込み (QA-Emb) を導入し, 各特徴がLLMに対して質問された質問に対する回答を表す。
我々はQA-Embを用いて、言語刺激に対するfMRIボクセル応答を予測するための解釈可能なモデルを柔軟に生成する。
論文 参考訳(メタデータ) (2024-05-26T22:30:29Z) - Enhancing Answer Selection in Community Question Answering with
Pre-trained and Large Language Models [0.9065034043031668]
まず,質問応答型クロスアテンションネットワーク(QAN)を提案する。
次に,大規模言語モデル(LLM)を用いて,知識拡張による回答選択を行う。
実験の結果、QANモデルが2つのデータセット、SemEval2015とSemEval 2017の最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-11-29T10:24:50Z) - Getting MoRE out of Mixture of Language Model Reasoning Experts [71.61176122960464]
多様な特殊言語モデルを組み込んだMixture-of-Reasoning-Experts (MoRE) フレームワークを提案する。
実例,マルチホップ,数学的,コモンセンス推論など,さまざまな推論カテゴリに最適化されたプロンプトを備えたバックボーン言語モデルを特化する。
人間の研究では、専門家による予測と回答の選択プロセスが、アノテータがシステムの出力を信頼するタイミングをより正確に調整するのに役立ちます。
論文 参考訳(メタデータ) (2023-05-24T02:00:51Z) - Momentum Contrastive Pre-training for Question Answering [54.57078061878619]
MCROSSはモーメントコントラスト学習フレームワークを導入し、クローゼのような解答確率と自然な問合せのサンプルペアを一致させる。
本手法は,教師付きシナリオとゼロショットシナリオの両方において,すべてのベースラインと比較して顕著な改善を実現している。
論文 参考訳(メタデータ) (2022-12-12T08:28:22Z) - Learn to Explain: Multimodal Reasoning via Thought Chains for Science
Question Answering [124.16250115608604]
本稿では,SQA(Science Question Answering)について紹介する。SQA(Science Question Answering)は,21万のマルチモーダルな複数選択質問と多様な科学トピックと,それに対応する講義や説明による回答の注釈からなる新しいベンチマークである。
また,SQAでは,数ショットのGPT-3では1.20%,微調整のUnifiedQAでは3.99%の改善が見られた。
我々の分析は、人間に似た言語モデルは、より少ないデータから学習し、わずか40%のデータで同じパフォーマンスを達成するのに、説明の恩恵を受けることを示している。
論文 参考訳(メタデータ) (2022-09-20T07:04:24Z) - Few-shot Question Generation for Personalized Feedback in Intelligent
Tutoring Systems [22.167776818471026]
パーソナライズされた修正フィードバックシステムは、生成質問応答システムを改善する可能性があることを示す。
実対話型ITSでは,生徒の学習能力が45%,23%向上した。
論文 参考訳(メタデータ) (2022-06-08T22:59:23Z) - Automatic Short Math Answer Grading via In-context Meta-learning [2.0263791972068628]
本研究では,数学質問に対する児童生徒の回答に対する自動短解格付けの問題について検討する。
我々は、数学的な内容に適応した人気のある言語モデルBERTの変種である MathBERT をベースモデルとして使用しています。
第二に、言語モデルへの入力としてスコアリングサンプルを提供する、コンテキスト内学習アプローチを用いる。
論文 参考訳(メタデータ) (2022-05-30T16:26:02Z) - Question Personalization in an Intelligent Tutoring System [5.644357169513361]
教科能力の異なる学生に合った質問を生成すれば,生徒の学習能力が向上することを示す。
この知見は,質問の言語的実現が学生の学習結果に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-05-25T15:23:51Z) - Question Generation for Adaptive Education [7.23389716633927]
深層知識追跡(LM-KT)のための事前学習言語モデルを微調整する方法を示す。
このモデルは、学生が正しい質問に答える確率を正確に予測し、訓練中に見えない質問に一般化する。
次に、LM-KTを用いて、モデルの訓練対象とデータを特定し、学生に条件付き質問を生成し、難易度を目標とする。
論文 参考訳(メタデータ) (2021-06-08T11:46:59Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
本稿では,既存のモデルで解けるより単純なモデルに分解することで,複雑なタスクを解くための解釈可能なシステムを構築するためのフレームワークを提案する。
我々はこのフレームワークを用いて、ニューラルネットワークのファクトイド単一スパンQAモデルとシンボリック電卓で答えられるサブクエストに分解することで、マルチホップ推論問題に答えられるシステムであるModularQAを構築する。
論文 参考訳(メタデータ) (2020-09-01T23:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。