論文の概要: LightDefense: A Lightweight Uncertainty-Driven Defense against Jailbreaks via Shifted Token Distribution
- arxiv url: http://arxiv.org/abs/2504.01533v1
- Date: Wed, 02 Apr 2025 09:21:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 19:59:19.300458
- Title: LightDefense: A Lightweight Uncertainty-Driven Defense against Jailbreaks via Shifted Token Distribution
- Title(参考訳): LightDefense: シフトトケン配布による脱獄に対する軽量不確実性駆動防御
- Authors: Zhuoran Yang, Jie Peng, Zhen Tan, Tianlong Chen, Yanyong Zhang,
- Abstract要約: 大規模言語モデル(LLM)は、脱獄プロンプトからの脅威に直面している。
ホワイトボックスモデルを対象とした軽量防衛機構であるLightDefenseを提案する。
- 参考スコア(独自算出の注目度): 84.2846064139183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) face threats from jailbreak prompts. Existing methods for defending against jailbreak attacks are primarily based on auxiliary models. These strategies, however, often require extensive data collection or training. We propose LightDefense, a lightweight defense mechanism targeted at white-box models, which utilizes a safety-oriented direction to adjust the probabilities of tokens in the vocabulary, making safety disclaimers appear among the top tokens after sorting tokens by probability in descending order. We further innovatively leverage LLM's uncertainty about prompts to measure their harmfulness and adaptively adjust defense strength, effectively balancing safety and helpfulness. The effectiveness of LightDefense in defending against 5 attack methods across 2 target LLMs, without compromising helpfulness to benign user queries, highlights its potential as a novel and lightweight defense mechanism, enhancing security of LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、脱獄プロンプトからの脅威に直面している。
既存のジェイルブレイク攻撃に対する防御方法は、主に補助モデルに基づいている。
しかし、これらの戦略は、しばしば広範なデータ収集やトレーニングを必要とする。
ホワイトボックスモデルをターゲットにした軽量防衛機構であるLightDefenseを提案する。この機構は,トークンの確率を制御し,下位順の確率でトークンをソートした後,上位トークンに安全宣言を表示させる。
さらに,LSMの有害度を測定するプロンプトに対する不確実性を革新的に活用し,防御強度を適応的に調整し,安全性と利便性を効果的にバランスさせる。
LightDefenseの2つのLLMに対する5つの攻撃方法に対する防御効果は、ユーザクエリの良さを損なうことなく、新規で軽量な防御メカニズムとしての可能性を強調し、LLMのセキュリティを強化している。
関連論文リスト
- DETAM: Defending LLMs Against Jailbreak Attacks via Targeted Attention Modification [18.006622965818856]
我々は,LDMのジェイルブレイク攻撃に対する防御能力を向上する,微調整不要な防御手法であるDETAMを紹介する。
具体的には,ジェイルブレイク攻撃に敏感なアテンションヘッドを識別するために,防衛の成功と失敗の間のアテンションスコアの差を分析した。
推論中、攻撃トークンからの干渉を最小限に抑え、ユーザーの中核的な意図を強調するために注意を向ける。
論文 参考訳(メタデータ) (2025-04-18T09:02:12Z) - Improving LLM Safety Alignment with Dual-Objective Optimization [65.41451412400609]
大規模言語モデル(LLM)の既存のトレーニング時間安全アライメント技術は、ジェイルブレイク攻撃に対して脆弱なままである。
本研究では,DPOの目的を2つの構成要素にまとめる安全アライメントの改善について提案する。(1) 安全でない世代が部分的に発生しても拒否を促す頑健な拒絶訓練,(2) 有害な知識の未学習。
論文 参考訳(メタデータ) (2025-03-05T18:01:05Z) - Token Highlighter: Inspecting and Mitigating Jailbreak Prompts for Large Language Models [61.916827858666906]
大規模言語モデル(LLM)は、ユーザクエリに対する応答を提供するために、ChatGPTなどのサービスに統合されつつある。
本稿では,Token Highlighterという手法を提案する。
論文 参考訳(メタデータ) (2024-12-24T05:10:02Z) - FlexLLM: Exploring LLM Customization for Moving Target Defense on Black-Box LLMs Against Jailbreak Attacks [7.31505609352525]
大規模言語モデル(LLM)の防衛は、有害なコンテンツを生成するためにこれらのシステムを利用する多数の攻撃者に対抗するために不可欠である。
モデルロバスト性を高めるために、デコードハイパーパラメータを変更する移動目標防御手法を提案する。
以上の結果から,テストした3つのモデルのうち,我々の防衛は脱獄攻撃に対して最も効果的であることが示された。
論文 参考訳(メタデータ) (2024-12-10T17:02:28Z) - Harnessing Task Overload for Scalable Jailbreak Attacks on Large Language Models [8.024771725860127]
大きな言語モデル(LLM)は、安全メカニズムをバイパスするジェイルブレイク攻撃に対して脆弱なままである。
我々は, LLMの安全性ポリシーの活性化を前提として, 計算資源を占有する新しい拡張性のあるジェイルブレイク攻撃を導入する。
論文 参考訳(メタデータ) (2024-10-05T15:10:01Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
本稿では,PAD(Adversarial Defender Training)を用いたPurple-teaming LLMを提案する。
PADは、赤チーム(アタック)技術と青チーム(セーフティトレーニング)技術を新たに取り入れることで、LSMを保護するために設計されたパイプラインである。
PADは、効果的な攻撃と堅牢な安全ガードレールの確立の両方において、既存のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-07-01T23:25:30Z) - SelfDefend: LLMs Can Defend Themselves against Jailbreaking in a Practical Manner [21.414701448926614]
本稿では,自衛隊(SelfDefend)と呼ばれる総称LDMジェイルブレイク防御フレームワークを紹介する。
主要なjailbreak攻撃に対して,メインストリームのGPT-3.5/4モデルを使用することを実証的に検証した。
防衛の堅牢性をさらに向上し、コストを最小化するために、我々は専用のオープンソース防衛モデルをチューニングするためにデータ蒸留アプローチを採用している。
論文 参考訳(メタデータ) (2024-06-08T15:45:31Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - Protecting Your LLMs with Information Bottleneck [20.870610473199125]
本稿では,情報ボトルネック原理に基づく防御機構であるIBProtector(Information Bottleneck Protector)を紹介する。
IBProtectorは、軽量で訓練可能な抽出器によって促進されるプロンプトを選択的に圧縮し、摂動する。
IBProtectorはジェイルブレイク対策において,現在の防御方法よりも優れていた。
論文 参考訳(メタデータ) (2024-04-22T08:16:07Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。